

1

AI on the Water: Applying DRL to Autonomous Vessel

Navigation

Md Shadab Alam*1, Sanjeev Kumar Ramkumar Sudha2 and Abhilash Somayajula3

ABSTRACT

Human decision-making errors cause a majority of globally reported marine accidents. As a

result, automation in the marine industry has been gaining more attention in recent years.

Obstacle avoidance becomes very challenging for an autonomous surface vehicle in an

unknown environment. We explore the feasibility of using Deep Q-Learning (DQN), a deep

reinforcement learning approach, for controlling an underactuated autonomous surface

vehicle to follow a known path while avoiding collisions with static and dynamic obstacles.

The ship's motion is described using a three-degree-of-freedom (3-DOF) dynamic model. The

KRISO container ship (KCS) is chosen for this study because it is a benchmark hull used in

several studies, and its hydrodynamic coefficients are readily available for numerical

modelling. This study shows that Deep Reinforcement Learning (DRL) can achieve path

following and collision avoidance successfully and can be a potential candidate that may be

investigated further to achieve human-level or even better decision-making for autonomous

marine vehicles.

KEYWORDS

Deep Reinforcement Learning; Marine Autonomy; Obstacle Avoidance; Path Following

1. INTRODUCTION

Recent International Maritime Organization (IMO) regulations on improving ship energy

efficiency (measured by the Energy Efficiency Design Index- EEDI) and lowering CO

emissions have pushed ship designers and owners to consider autonomous ships. Autonomous

ships can increase fuel efficiency through better weather routing, improve safety with

collision avoidance strategies, lead to efficient vessel operations, and be used for surveillance

and reconnaissance missions. For example, after the deployment of the Yara Birkeland, the

world’s first autonomous and fully electric container vessel, in 2021, it was estimated that

40,000 trips performed by diesel vehicles annually could be eliminated. Similarly, up to 80-85

% of all reported marine accidents could be attributed to human error (Baker et al. 2005).

These incidents endanger human lives and have the potential to cause serious harm to the

environment. With the recent progress in artificial intelligence (AI), it is imperative to explore

automation solutions for the maritime industry to reduce the probability of such incidents. AI

1 IIT Madras; 0000-0001-9184-9963; 1, oe21s007@smail.iitm.ac.in
2 NTNU; 0000-0001-7442-3696; 2, sanjeev.k.r.sudha@ntnu.no
3 IIT Madras; 0000-0002-5654-4627; 3, abhilash@iitm.ac.in

2

advancements, particularly in reinforcement learning (RL), now provide new ways to explore

ship trajectory tracking and collision avoidance solutions without human intervention.

To track waypoints for path following, conventional autopilots use line of sight (LOS)

guidance systems in conjunction with proportional-integral-derivative (PID) control systems

(Lekkas et al. 2012, Moreira et al. 2007). However, today there is an increasing need to

investigate AI-based control strategies, which can potentially perform better than traditional

controllers. It has already been shown to be promising for specific applications such as active

heave compensation (Zinage and Somayajula 2021, Zinage and Somayajula 2020) and

dynamic positioning system (Lee et al. 2020). Some contemporary studies have also begun to

investigate RL methods for path following and trajectory tracking. (Sivaraj et. al 2022) used

Deep Q Network (DQN) for heading control and path following of a KVLCC2 ship under the

influence of waves. (Woo et. al 2019) used a Deep Deterministic Policy Gradient (DDPG)

algorithm-based controller for path following and successfully implemented on a full-scale

Unmanned Surface Vessel (USV). (Meyer et. al 2020) applied the Proximal Policy

Optimization (PPO) algorithm to demonstrate that an RL agent could successfully follow a

predefined path while avoiding multiple obstacles.

2. THEORY

2.1. Ship Dynamic Model

The goal of waypoint tracking is to guide a vessel through a predetermined sequence of

waypoints. Control laws are used to regulate the rudder angle according to a chosen guidance

strategy, allowing the vessel to maintain a fixed propeller rotation rate. The problem is

formulated using two coordinate systems: a global coordinate system (GCS) fixed to the

Earth, where waypoint locations are specified, and a body coordinate system (BCS) fixed to

the vessel.

The ship dynamics are mathematically modelled using the MMG (Maneuvering Modelling

Group) model proposed in (Yoshimura and Masumoto 2012, Yasukawa and Yoshimura

2015). 3 non-linear equations of motion are used to solve for the vessel’s motion in surge,

sway and yaw directions. Based on a given rudder command δc, the equations of motion are

solved progressively at each time step as an initial value problem using a Runge-Kutta

explicit solver. The kinematics model is represented by eq. 1.

 η̇ = [𝑅(ψ)]ν (1)

where, R(𝜓) represents the rotation matrix which transforms a vector from BCS to GCS.

Details of the modelling of propeller, rudder and hull hydrodynamic forces can be found in

the works of (Yoshimura and Masumoto 2012, Deraj et al. 2023). All equations of motion are

non-dimensionalized with prime-II system as described in (Fossen 2011), using the length

between perpendiculars (L) and the design speed of the vessel (U).

3

2.2 Calculation of collision risk (CR)

 When dealing with a scenario where a ship encounters multiple obstacles, it is crucial to

evaluate the Collision Risk (CR) in order to determine an appropriate avoidance point for the

autonomous navigation system. One method of evaluating CR is the Closest Point Approach

(CPA), which utilizes the distance between the ship and obstacle at the closest point they

approach each other while maintaining their current speed and direction. The Closest Point is

defined as the Distance to the Closest Point Approach (DCPA), and the Time to the Closest

Point Approach (TCPA) represents the duration for the obstacle to reach the Closest Point. In

simpler terms, the DCPA gauges the seriousness of a potential collision while the TCPA

represents the urgency of the situation, as depicted in Fig. 1.

Figure 1. Collision Risk (CR)

Two different studies, (Mou et al. 2010) and (Zhen et al. 2017), presented techniques for

evaluating CR by utilizing a combination of DCPA and TCPA. In the current research, CPA

was employed to quantitatively evaluate both the ship and obstacle. Fig. 1 provides an

explanation of the concepts of CPA, TCPA, and DCPA, and the equations presented in (4) is

used to calculate TCPA and DCPA.

 𝐷𝐶𝑃𝐴 = 𝑅 sin(χ𝑅 − χ𝑜𝑠 − θ𝑇 − π) (4)

𝑇𝐶𝑃𝐴 =
𝑅

𝑉𝑅
cos(χ𝑅 − χ𝑜𝑠 − θ𝑇 − π)

where R is the absolute distance between the ship and an obstacle, and VR and 𝜒R are the

relative speed and course angle between them. In addition, 𝜒OS is the course of the obstacle,

while 𝜃 is the bearing of the obstacle relative to the ship.

 A number of research investigations have suggested techniques for quantitatively evaluating

CR through the utilization of TCPA and DCPA. Among these, a straightforward evaluation

equation was put forth by (Mou et. al 2010), which employs the exponential functions of

TCPA and DCPA.

4

 𝐶𝑅 = {
𝑒𝑥𝑝(−𝐷𝐶𝑃𝐴 − 𝑇𝐶𝑃𝐴), 𝑖𝑓 𝑇𝐶𝑃𝐴 > 0

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

The research examines the quantitative evaluation of the collision risk (CR) between the ship

and the obstacle. The degree of danger in an encounter situation is determined by the values

of DCPA and TCPA, which are included in Equation 5. A CR of 0 is recorded if DCPA or

TCPA is infinite, indicating that there are no target obstacles near the ship or that TCPA is

negative. If TCPA is negative, it means that either the ship and the obstacle have already

passed each other or that they are moving in a way that avoids a collision.

2.3 Reinforcement Learning

The objective of an RL agent is to maximize a numerical signal, referred to as reward, which

is provided by the environment based on the agent's actions (Sutton et. al 2018). In Deep

Reinforcement Learning (DRL), the agent is a neural network that utilizes the environment's

observations as input and produces actions as output. The agent's parameters are adjusted

using an algorithm that relies on the rewards received from the environment to update the

network's parameters. The role of rewards in DRL is crucial since the agent learns by trial and

error. The agent explores various actions and observes the rewards received from the

environment. Over time, the agent identifies which actions result in the highest rewards and

updates its policy to maximize future rewards.

 𝑅 = ∑ 𝑟𝑡
𝑇
𝑡=0 (6)

3. IMPLEMENTATION OF DQN ALGORITHM FOR SHIP NAVIGATION

This section discusses the details of DQN algorithm (Mnih et al. 2013) applied to the

autonomous ship for waypoint tracking and obstacle avoidance. This section describes how

the observation state space, action space and rewards are defined to tackle this problem. Note

that this study exclusively focuses on path following combined with obstacle avoidance. In

this study, TensorFlow framework is used to model the RL agent. Fig. 2. shows the schematic

representation of the problem statement.

3.1 Observation State Space

At each time step, the observation state vector represents the current state of the agent that is

provided as an input to the Q-network. The RL agent decides what action to take based on this

information. The observation state is defined using seven variables for static obstacle

environment and nine for dynamic obstacle. The states for each environment are shown in

Eq.8

𝑠𝑠𝑡𝑎𝑡𝑖𝑐 = [𝑑𝑐, χ𝑒 , 𝑑𝑤𝑝, 𝑟, 𝑑𝑜𝑏𝑠, ψ𝑜𝑏𝑠, 𝑆𝑜𝑏𝑠]

 𝑠𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = [𝑑𝑐, χ𝑒 , 𝑑𝑤𝑝, 𝑟, 𝑑𝑜𝑏𝑠, ψ𝑜𝑏𝑠, 𝑆𝑜𝑏𝑠, 𝑣𝑥 , 𝑣𝑦] (8)

https://www.codecogs.com/eqnedit.php?latex=%20CR%20%3D%20%5Cbegin%7Bcases%7D%20%5Cexp(-DCPA-TCPA)%5Chspace%7B1cm%7D%5Ctext%7Bif%7D%5Chspace%7B0.2cm%7D%5Ctext%7BTCPA%7D%3E0%5C%5C%5C%5C%200%5Chspace%7B6cm%7D%5Ctext%7Botherwise%7D%20%5C%5C%20%5Cend%7Bcases%7D#1
https://www.codecogs.com/eqnedit.php?latex=R%3D%20%5Csum_%7Bt%3D0%7D%5E%7BT%7D%20r_%7Bt%7D#1

5

Figure 2. Representation of the problem statement

where is the cross track error, is the course angle error, is the distance to waypoint,

r is the yaw rate, is the distance to obstacle, is the angle of the obstacle from ship,

 is the size of the ship, is the relative velocity of the obstacle towards the ship with

respect to ship and is the velocity of the obstacle perpendicular to the ship.

3.2 Action Space

The commanded rudder angle, is the action that the agent can choose at a given time step

and it is divided into a set of five discrete values δ𝑐 ∈ [−35°, −20°, 0°, 20°, 35°].

3.3 Reward Structure

The rewards must be designed in a way to help the agent achieve the required balance

between the path following and obstacle avoidance objectives. The rewards obtained at any

intermediate time step are given by (Deraj et al. 2023):

𝑟1 = 2exp(
−𝑑𝑐

2

12.5
) − 1

 𝑟2 = 1.3 exp(−10|χ𝑒|) − 0.3 (9)

𝑟3 =
−𝑑𝑤𝑝

4

where is the reward associated with cross track error, is the reward associated with

course angle error. Finally to make overall reward negative, we introduced a reward that

depends on the distance between the ship's current position and the destination waypoint. The

reward at time step is denoted by and is given as the sum of the rewards from each

component at that time step.

 𝑟𝑡 = 𝑟1 + 𝑟2 + 𝑟3

 𝑅 = ∑ 𝑟𝑡
𝑛
𝑡=0 (10)

https://www.codecogs.com/eqnedit.php?latex=%5Cdelta_c%20%5Cin%20%5B-35%5Cdegree%2C%20-20%5Cdegree%2C%200%5Cdegree%2C%2020%5Cdegree%2C%2035%5Cdegree%5D#1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=r_%7Bt%7D%26%3Dr_%7B1%7D%2Br_%7B2%7D%2Br_%7B3%7D#1

6

In eq. 10, is the reward at time step t and R is the episode return, which is the cumulative

sum of rewards obtained at each time step.

3.4 Training Process

During each training episode, the vessel commences at the origin point with a fixed initial

velocity in the surge direction and an orientation along the positive X-axis of the Global

Coordinate System (𝜓 = 0). The vessel's initial acceleration is zero in three degrees of

freedom, while the initial velocity is zero in the sway and yaw motions. To enable sufficient

exploration, the -greedy strategy is used during training. The value of decreases linearly

from 1 to 0 over the course of the training process, leading to increasing exploitation. The

destination is randomly selected for each training episode, while the initial waypoint, velocity,

and heading remain fixed at (0,0), 1 and , respectively.

The distance between the destination and initial waypoints is randomly selected from a

uniform distribution between 8L and 18L. For the static obstacle environment, in 60% of the

training episodes, the obstacle is placed randomly within 0.25 to 0.75 times the distance

between the waypoints, along the line joining the two points. Conversely, during the

remaining 40% of the training iterations, the obstacle is placed randomly inside a circle with a

radius ranging from 0.25 to 0.75 times the distance between the initial and goal waypoints. It

is noteworthy that in this case, the obstacle may not be on the line joining the two points and

may not even be in the ship's path. This biased placement of obstacles is intended to allow the

agent to encounter obstacles in various scenarios and learn how to react when the obstacle is

not in the vessel's path.

In the context of dynamic obstacle environment, a random destination waypoint is generated

between 8L to 18L, and obstacles are randomly placed within 5L to 20L. Each obstacle has a

velocity of 0 to 1.67U and a size of 0 to 1L. Incorporating the states of each obstacle would

result in a large neural network size, so a collision risk calculation is proposed to identify the

most critical obstacle that poses the highest threat of colliding with the ship. At each timestep,

only information about the critical obstacle is passed to the neural network. By employing this

approach, our study aims to improve the computational efficiency of the neural network in a

dynamic obstacle environment.

In this task, each episode is limited to 160 time-steps, but it can terminate earlier if a

termination condition is met. The success criterion for an episode is for the ship to enter a

region within 0.5L of the destination waypoint. If this condition is satisfied, a terminal reward

of +20 is awarded. On the other hand, if the ship collides with an obstacle, the episode ends,

and the reward is -100 in a static obstacle environment and -200 in a dynamic obstacle

environment. The discrepancy in the reward values is attributed to the smoother trajectory in a

static environment, where only one obstacle can lead to a collision. However, in a dynamic

environment, the obstacle's position changes due to its velocity, causing the critical obstacle

for a collision to change as well. Therefore, the agent may take a longer route to avoid all

obstacles and reach the destination safely. Another condition is established to determine

7

whether the agent can still reach the destination point, or if the episode is a failure, and the

ship is wandering aimlessly. The termination condition is as follows:

 𝑣1⃗⃗⃗⃗ ⋅ 𝑣2⃗⃗⃗⃗ < 0 and 𝑈⃗⃗ ⋅ 𝑣2⃗⃗⃗⃗ < 0 (11)

4 HYPERPARAMETERS OF THE NETWORK

The training losses and episode returns averaged over 100 episodes are shown in Fig. 3 and

Fig. 4. The learning rate is chosen as an exponentially decaying function. The

hyperparameters for the model are given below in Table. 1.

TABLE I : Hyperparameters

Hyperparameters Value (Static) Value (Dynamic)

 Initial Learning rate 0.00075 0.00075

Decay Steps 50000 50000

Decay Rate 0.4 0.5

Hidden layers 128,128 128,128

Discount factor 0.97 0.97

Sample batch size 128 128

Replay buffer size 100000 100000

Activation function Tanh tanh

Number of episodes 9000 8000

Update frequency (time steps) 10 5

Target network update frequency (time steps) 1 1

Target update rate 0.01 0.01

Figure 3. Training loss and returns for static obstacle environment

Figure 4. Training loss and returns for dynamic obstacle environment

5. RESULTS

A DQN agent is trained using the framework defined in Section. 3. The RL agent is tested by

 isodes

o
ss

 isodes

et
u
rn
s

https://www.codecogs.com/eqnedit.php?latex=%5Cvec%7Bv_1%7D%20%5Ccdot%20%5Cvec%7Bv_2%7D%20%3C%200%5Ctext%7B%20and%20%7D%20%5Cvec%7BU%7D%20%5Ccdot%20%5Cvec%7Bv_2%7D%20%3C%200#1

8

analyzing waypoint tracking and path following followed by adding obstacles between the

defined path in different situations in a calm water scenario. A starting state is chosen where

the vessel is oriented along the global X-axis and initialized with unit non-dimensional

velocity in the surge direction. The ability of the agent to track points in different cases with

the same initial starting state as mentioned above in each case.

Fig. 5(a) shows that the DQN based controller can maintain a heading, avoid an obstacle

present on the desired path and regain heading. Fig. 5(b) and Fig. 5(c) demonstrate that the

DQN agent can also track waypoints at a different heading than the initial heading and also

avoid the obstacle present in between the path when the obstacle is present in between the

waypoint. Fig. 6(a) and Fig. 6(b) demonstrate that the RL agent can successfully avoid the

obstacle even in the case where the obstacle is not on the line joining the waypoints but within

its natural path as it tracks the goal. It can observed that when the obstacle is large, the agent

takes action to cross the line joining the waypoints and continue tracking goal when the

distance to the obstacle is significantly safe.

The results depicted in Link 1, Link 2, Link 3 and Link 4 demonstrate that the DQN controller

effectively navigates past dynamic obstacles and successfully reaches the intended

destination.

 (a) Case I (b) Case II (c) Case III

Figure 5. Static Obstacle on the line joining the waypoints.

 (a) Case I (b) Case II

 Figure 6. Static Obstacle on path of ships

https://www.youtube.com/watch?v=fZHgZMI-uwo&list=PLqzNUZRFcEoNAclz_60HAez0RDFItvj56&index=1
https://www.youtube.com/watch?v=m46XgtFVzrk&list=PLqzNUZRFcEoNAclz_60HAez0RDFItvj56&index=2
https://www.youtube.com/watch?v=MRYKCA_XcQw&list=PLqzNUZRFcEoNAclz_60HAez0RDFItvj56&index=3
https://www.youtube.com/watch?v=I0-nAl9LZaQ&list=PLqzNUZRFcEoNAclz_60HAez0RDFItvj56&index=4

9

6. DISCUSSIONS

The study evaluated the performance of a model trained on the static obstacle environment in

scenarios with multiple obstacles. To test the model's ability to navigate through such

environments, the authors employed the use of collision risk (CR), which was described in

Figure 7. Square trajectory

Section 2.2. To calculate CR when dealing with static obstacles, the velocity of the obstacle

was set to zero, while all other calculations remained unchanged. The results are presented in

Fig. 7, which illustrates the agent's performance on a square trajectory with a side length of

15L with an obstacle positioned between each waypoint. The findings revealed that the agent

successfully avoided the obstacles and reached each waypoint along the trajectory.

7. CONCLUSION

This study has implemented a DRL based controller for an autonomous ship to navigate it

successfully to the desired location while avoiding obstacles. The ability of the DQN agent to

track waypoints in different scenarios and avoid static and dynamic obstacles is demonstrated.

Future work will include adding environmental effects due to currents and waves, which are

important for meeting energy efficiency constraints set by the IMO. The RL agent performs

well in simulations, but its practical effectiveness will be tested by implementing it on an

ASV and comparing it to traditional controllers.

8. ACKNOWLEDGEMENT

This work was partially funded by the Science and Engineering Research Board (SERB) India

- SERB Grant CRG/2020/003093 and New Faculty Seed Grant of IIT Madras. This work is

also supported through the proposed {Center of Excellence for Marine Autonomous Systems

(CMAS), IIT Madras} setup under the Institute of Eminence Scheme of Government of India.

https://ioe.iitm.ac.in/project/marine-autonomous-systems/
https://ioe.iitm.ac.in/project/marine-autonomous-systems/

10

REFRENCES

[1] Yasukawa, H., & Yoshimura, Y. (2015). Introduction of MMG standard method for

ship maneuvering predictions. Journal of marine science and technology, 20, 37-52.

[2] Baker, C. C., & McCafferty, D. B. (2005, February). Accident database review of

human element concerns: What do the results mean for classification. In Proc. Int

Conf.‘Human Factors in Ship Design and Operation, RINA Feb.

[3] Lekkas, A. M., & Fossen, T. I. (2012). A time-varying lookahead distance guidance

law for path following. IFAC Proceedings Volumes, 45(27), 398-403.

[4] Deraj, R., Kumar, R. S., Alam, M. S., & Somayajula, A. (2023). Deep reinforcement

learning based controller for ship navigation. Ocean Engineering, 273, 113937.

[5] Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control.

John Wiley & Sons.

[6] Zinage, S., & Somayajula, A. (2021). Deep Reinforcement Learning Based Controller

for Active Heave Compensation. IFAC-PapersOnLine, 54(16), 161-167.

[7] Zinage, S., & Somayajula, A. (2020). A comparative study of different active heave

compensation approaches. Ocean Systems Engineering, 10(4), 373.

[8] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT

press.

[9] Mou, J. M., Van Der Tak, C., & Ligteringen, H. (2010). Study on collision avoidance

in busy waterways by using AIS data. Ocean Engineering, 37(5-6), 483-490.

[10] Zhen, R., Riveiro, M., & Jin, Y. (2017). A novel analytic framework of real-

time multi-vessel collision risk assessment for maritime traffic surveillance. Ocean

Engineering, 145, 492-501.

[11] Yoshimura, Y., & Masumoto, Y. (2012). Hydrodynamic force database with

medium high speed merchant ships including fishing vessels and investigation into a

manoeuvring prediction method. Journal of the Japan Society of Naval Architects and

Ocean Engineers, 14, 63-73.

[12] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,

D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602.

[13] Moreira, L., Fossen, T. I., & Soares, C. G. (2007). Path following control

system for a tanker ship model. Ocean Engineering, 34(14-15), 2074-2085.

[14] Lee, D., Lee, S. J., & Yim, S. C. (2020). Reinforcement learning-based

adaptive PID controller for DPS. Ocean Engineering, 216, 108053.

[15] Sivaraj, S., Rajendran, S., & Prasad, L. P. (2022). Data driven control based on

Deep Q-Network algorithm for heading control and path following of a ship in calm

water and waves. Ocean Engineering, 259, 111802.

[16] Woo, J., Yu, C., & Kim, N. (2019). Deep reinforcement learning-based

controller for path following of an unmanned surface vehicle. Ocean

Engineering, 183, 155-166.

[17] Meyer, E., Robinson, H., Rasheed, A., & San, O. (2020). Taming an

autonomous surface vehicle for path following and collision avoidance using deep

reinforcement learning. IEEE Access, 8, 41466-41481.

View publication stats

https://www.researchgate.net/publication/371701460

