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ABSTRACT 

 

Human decision-making errors cause a majority of globally reported marine accidents. As a 

result, automation in the marine industry has been gaining more attention in recent years. 

Obstacle avoidance becomes very challenging for an autonomous surface vehicle in an 

unknown environment. We explore the feasibility of using Deep Q-Learning (DQN), a deep 

reinforcement learning approach, for controlling an underactuated autonomous surface 

vehicle to follow a known path while avoiding collisions with static and dynamic obstacles. 

The ship's motion is described using a three-degree-of-freedom (3-DOF) dynamic model. The 

KRISO container ship (KCS) is chosen for this study because it is a benchmark hull used in 

several studies, and its hydrodynamic coefficients are readily available for numerical 

modelling. This study shows that Deep Reinforcement Learning (DRL) can achieve path 

following and collision avoidance successfully and can be a potential candidate that may be 

investigated further to achieve human-level or even better decision-making for autonomous 

marine vehicles. 
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1. INTRODUCTION 

 

Recent International Maritime Organization (IMO) regulations on improving ship energy 

efficiency (measured by the Energy Efficiency Design Index- EEDI) and lowering CO 

emissions have pushed ship designers and owners to consider autonomous ships. Autonomous 

ships can increase fuel efficiency through better weather routing, improve safety with 

collision avoidance strategies, lead to efficient vessel operations, and be used for surveillance 

and reconnaissance missions. For example, after the deployment of the Yara Birkeland, the 

world’s first autonomous and fully electric container vessel, in 2021, it was estimated that 

40,000 trips performed by diesel vehicles annually could be eliminated. Similarly, up to 80-85 

% of all reported marine accidents could be attributed to human error (Baker et al. 2005). 

These incidents endanger human lives and have the potential to cause serious harm to the 

environment. With the recent progress in artificial intelligence (AI), it is imperative to explore 

automation solutions for the maritime industry to reduce the probability of such incidents. AI 
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advancements, particularly in reinforcement learning (RL), now provide new ways to explore 

ship trajectory tracking and collision avoidance solutions without human intervention. 

 

To track waypoints for path following, conventional autopilots use line of sight (LOS) 

guidance systems in conjunction with proportional-integral-derivative (PID) control systems 

(Lekkas et al. 2012, Moreira et al. 2007). However, today there is an increasing need to 

investigate AI-based control strategies, which can potentially perform better than traditional 

controllers. It has already been shown to be promising for specific applications such as active 

heave compensation (Zinage and Somayajula 2021, Zinage and Somayajula 2020) and 

dynamic positioning system (Lee et al. 2020). Some contemporary studies have also begun to 

investigate RL methods for path following and trajectory tracking. (Sivaraj et. al 2022) used 

Deep Q Network (DQN) for heading control and path following of a KVLCC2 ship under the 

influence of waves. (Woo et. al 2019) used a Deep Deterministic Policy Gradient (DDPG) 

algorithm-based controller for path following and successfully implemented on a full-scale 

Unmanned Surface Vessel (USV). (Meyer et. al 2020) applied the Proximal Policy 

Optimization (PPO) algorithm to demonstrate that an RL agent could successfully follow a 

predefined path while avoiding multiple obstacles. 

 

2. THEORY 

 

2.1. Ship Dynamic Model 

 

The goal of waypoint tracking is to guide a vessel through a predetermined sequence of 

waypoints. Control laws are used to regulate the rudder angle according to a chosen guidance 

strategy, allowing the vessel to maintain a fixed propeller rotation rate. The problem is 

formulated using two coordinate systems: a global coordinate system (GCS) fixed to the 

Earth, where waypoint locations are specified, and a body coordinate system (BCS) fixed to 

the vessel.  

 

The ship dynamics are mathematically modelled using the MMG (Maneuvering Modelling 

Group) model proposed in (Yoshimura and Masumoto 2012, Yasukawa and Yoshimura 

2015). 3 non-linear equations of motion are used to solve for the vessel’s motion in surge, 

sway and yaw directions. Based on a given rudder command δc, the equations of motion are 

solved progressively at each time step as an initial value problem using a Runge-Kutta 

explicit solver. The kinematics model is represented by eq. 1. 

 

                                                                     η̇ = [𝑅(ψ)]ν                                                                (1) 

 

where, R(𝜓) represents the rotation matrix which transforms a vector from BCS to GCS.  

Details of the modelling of propeller, rudder and hull hydrodynamic forces can be found in 

the works of (Yoshimura and Masumoto 2012, Deraj et al. 2023). All equations of motion are 

non-dimensionalized with prime-II system as described in (Fossen 2011), using the length 

between perpendiculars (L) and the design speed of the vessel (U). 
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2.2 Calculation of collision risk (CR) 

 

 When dealing with a scenario where a ship encounters multiple obstacles, it is crucial to 

evaluate the Collision Risk (CR) in order to determine an appropriate avoidance point for the 

autonomous navigation system. One method of evaluating CR is the Closest Point Approach 

(CPA), which utilizes the distance between the ship and obstacle at the closest point they 

approach each other while maintaining their current speed and direction. The Closest Point is 

defined as the Distance to the Closest Point Approach (DCPA), and the Time to the Closest 

Point Approach (TCPA) represents the duration for the obstacle to reach the Closest Point. In 

simpler terms, the DCPA gauges the seriousness of a potential collision while the TCPA 

represents the urgency of the situation, as depicted in Fig. 1. 

Figure 1. Collision Risk (CR) 

 

Two different studies, (Mou et al. 2010) and (Zhen et al. 2017), presented techniques for 

evaluating CR by utilizing a combination of DCPA and TCPA. In the current research, CPA 

was employed to quantitatively evaluate both the ship and obstacle. Fig. 1 provides an 

explanation of the concepts of CPA, TCPA, and DCPA, and the equations presented in (4) is 

used to calculate TCPA and DCPA. 

 

                                                   𝐷𝐶𝑃𝐴 = 𝑅 sin(χ𝑅 − χ𝑜𝑠 − θ𝑇 − π)                                          (4) 

𝑇𝐶𝑃𝐴 =
𝑅

𝑉𝑅
cos(χ𝑅 − χ𝑜𝑠 − θ𝑇 − π) 

where R is the absolute distance between the ship and an obstacle, and VR and 𝜒R are the 

relative speed and course angle between them. In addition, 𝜒OS is the course of the obstacle, 

while 𝜃 is the bearing of the obstacle relative to the ship. 

 

 A number of research investigations have suggested techniques for quantitatively evaluating 

CR through the utilization of TCPA and DCPA. Among these, a straightforward evaluation 

equation was put forth by (Mou et. al 2010), which employs the exponential functions of 

TCPA and DCPA. 
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                                              𝐶𝑅 = {
𝑒𝑥𝑝(−𝐷𝐶𝑃𝐴 − 𝑇𝐶𝑃𝐴),  𝑖𝑓 𝑇𝐶𝑃𝐴 >  0

0              , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                       (5) 

 

The research examines the quantitative evaluation of the collision risk (CR) between the ship 

and the obstacle. The degree of danger in an encounter situation is determined by the values 

of DCPA and TCPA, which are included in Equation 5. A CR of 0 is recorded if DCPA or 

TCPA is infinite, indicating that there are no target obstacles near the ship or that TCPA is 

negative. If TCPA is negative, it means that either the ship and the obstacle have already 

passed each other or that they are moving in a way that avoids a collision. 

 

2.3 Reinforcement Learning 

 

The objective of an RL agent is to maximize a numerical signal, referred to as reward, which 

is provided by the environment based on the agent's actions (Sutton et. al 2018). In Deep 

Reinforcement Learning (DRL), the agent is a neural network that utilizes the environment's 

observations as input and produces actions as output. The agent's parameters are adjusted 

using an algorithm that relies on the rewards received from the environment to update the 

network's parameters. The role of rewards in DRL is crucial since the agent learns by trial and 

error. The agent explores various actions and observes the rewards received from the 

environment. Over time, the agent identifies which actions result in the highest rewards and 

updates its policy to maximize future rewards. 

 

                                                     𝑅 = ∑ 𝑟𝑡
𝑇
𝑡=0                                                     (6) 

 

3. IMPLEMENTATION OF DQN ALGORITHM FOR SHIP NAVIGATION 

 

This section discusses the details of DQN algorithm (Mnih et al. 2013) applied to the 

autonomous ship for waypoint tracking and obstacle avoidance. This section describes how 

the observation state space, action space and rewards are defined to tackle this problem. Note 

that this study exclusively focuses on path following combined with obstacle avoidance. In 

this study, TensorFlow framework is used to model the RL agent. Fig. 2. shows the schematic 

representation of the problem statement. 

 

3.1 Observation State Space 

 

At each time step, the observation state vector represents the current state of the agent that is 

provided as an input to the Q-network. The RL agent decides what action to take based on this 

information. The observation state is defined using seven variables for static obstacle 

environment and nine for dynamic obstacle. The states for each environment are shown in 

Eq.8  

𝑠𝑠𝑡𝑎𝑡𝑖𝑐 = [𝑑𝑐, χ𝑒 , 𝑑𝑤𝑝, 𝑟, 𝑑𝑜𝑏𝑠, ψ𝑜𝑏𝑠, 𝑆𝑜𝑏𝑠] 

                                        𝑠𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = [𝑑𝑐, χ𝑒 , 𝑑𝑤𝑝, 𝑟, 𝑑𝑜𝑏𝑠, ψ𝑜𝑏𝑠, 𝑆𝑜𝑏𝑠, 𝑣𝑥 , 𝑣𝑦]                              (8) 

https://www.codecogs.com/eqnedit.php?latex=%20CR%20%3D%20%5Cbegin%7Bcases%7D%20%5Cexp(-DCPA-TCPA)%5Chspace%7B1cm%7D%5Ctext%7Bif%7D%5Chspace%7B0.2cm%7D%5Ctext%7BTCPA%7D%3E0%5C%5C%5C%5C%200%5Chspace%7B6cm%7D%5Ctext%7Botherwise%7D%20%5C%5C%20%5Cend%7Bcases%7D#1
https://www.codecogs.com/eqnedit.php?latex=R%3D%20%5Csum_%7Bt%3D0%7D%5E%7BT%7D%20r_%7Bt%7D#1
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Figure 2. Representation of the problem statement 

 

where  is the cross track error,  is the course angle error,  is the distance to waypoint, 

r is the yaw rate,  is the distance to obstacle,  is the angle of the obstacle from ship, 

 is the size of the ship,  is the relative velocity of the obstacle towards the ship with 

respect to ship and  is the velocity of the obstacle perpendicular to the ship. 

 

3.2 Action Space 

 

The commanded rudder angle,  is the action that the agent can choose at a  given time step 

and it is divided into a set of five discrete values  δ𝑐 ∈ [−35°, −20°, 0°, 20°, 35°].  

 

3.3 Reward Structure 

 

The rewards must be designed in a way to help the agent achieve the required balance 

between the path following and obstacle avoidance objectives. The rewards obtained at any 

intermediate time step are given by (Deraj et al. 2023): 

 

𝑟1 = 2exp(
−𝑑𝑐

2

12.5
) − 1 

                                                           𝑟2 = 1.3 exp(−10|χ𝑒|) − 0.3                                              (9) 

𝑟3 =
−𝑑𝑤𝑝

4
 

where  is the reward associated with cross track error,  is the reward associated with 

course angle error. Finally to make overall reward negative, we introduced a reward  that 

depends on the distance between the ship's current position and the destination waypoint. The 

reward at time step  is denoted by  and is given as the sum of the rewards from each 

component at that time step. 

 
    𝑟𝑡 = 𝑟1 + 𝑟2 + 𝑟3 

                                                                          𝑅 = ∑ 𝑟𝑡
𝑛
𝑡=0                                                          (10) 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cdelta_c%20%5Cin%20%5B-35%5Cdegree%2C%20-20%5Cdegree%2C%200%5Cdegree%2C%2020%5Cdegree%2C%2035%5Cdegree%5D#1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=r_%7Bt%7D%26%3Dr_%7B1%7D%2Br_%7B2%7D%2Br_%7B3%7D#1
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In eq. 10,  is the reward at time step t and R is the episode return, which is the cumulative 

sum of rewards obtained at each time step. 

 

3.4 Training Process 

 

During each training episode, the vessel commences at the origin point with a fixed initial 

velocity in the surge direction and an orientation along the positive X-axis of the Global 

Coordinate System (𝜓 = 0). The vessel's initial acceleration is zero in three degrees of 

freedom, while the initial velocity is zero in the sway and yaw motions. To enable sufficient 

exploration, the -greedy strategy is used during training. The value of  decreases linearly 

from 1 to 0 over the course of the training process, leading to increasing exploitation. The  

destination is randomly selected for each training episode, while the initial waypoint, velocity, 

and heading remain fixed at (0,0), 1 and , respectively. 

 

The distance between the destination and initial waypoints is randomly selected from a 

uniform distribution between 8L and 18L. For the static obstacle environment, in 60% of the 

training episodes, the obstacle is placed randomly within 0.25 to 0.75 times the distance 

between the waypoints, along the line joining the two points. Conversely, during the 

remaining 40% of the training iterations, the obstacle is placed randomly inside a circle with a 

radius ranging from 0.25 to 0.75 times the distance between the initial and goal waypoints. It 

is noteworthy that in this case, the obstacle may not be on the line joining the two points and 

may not even be in the ship's path. This biased placement of obstacles is intended to allow the 

agent to encounter obstacles in various scenarios and learn how to react when the obstacle is 

not in the vessel's path. 

 

In the context of dynamic obstacle environment, a random destination waypoint is generated 

between 8L to 18L, and obstacles are randomly placed within 5L to 20L. Each obstacle has a 

velocity of 0 to 1.67U and a size of 0 to 1L. Incorporating the states of each obstacle would 

result in a large neural network size, so a collision risk calculation is proposed to identify the 

most critical obstacle that poses the highest threat of colliding with the ship. At each timestep, 

only information about the critical obstacle is passed to the neural network. By employing this 

approach, our study aims to improve the computational efficiency of the neural network in a 

dynamic obstacle environment. 

 

In this task, each episode is limited to 160 time-steps, but it can terminate earlier if a 

termination condition is met. The success criterion for an episode is for the ship to enter a 

region within 0.5L of the destination waypoint. If this condition is satisfied, a terminal reward 

of +20 is awarded. On the other hand, if the ship collides with an obstacle, the episode ends, 

and the reward is -100 in a static obstacle environment and -200 in a dynamic obstacle 

environment. The discrepancy in the reward values is attributed to the smoother trajectory in a 

static environment, where only one obstacle can lead to a collision. However, in a dynamic 

environment, the obstacle's position changes due to its velocity, causing the critical obstacle 

for a collision to change as well. Therefore, the agent may take a longer route to avoid all 

obstacles and reach the destination safely. Another condition is established to determine 
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whether the agent can still reach the destination point, or if the episode is a failure, and the 

ship is wandering aimlessly. The termination condition is as follows: 

                                                       𝑣1⃗⃗⃗⃗ ⋅ 𝑣2⃗⃗⃗⃗ < 0 and �⃗⃗� ⋅ 𝑣2⃗⃗⃗⃗ < 0                                                    (11) 

 

4 HYPERPARAMETERS OF THE NETWORK 

 

The training losses and episode returns averaged over 100 episodes are shown in Fig. 3 and 

Fig. 4. The learning rate is chosen as an exponentially decaying function. The 

hyperparameters for the model are given below in Table. 1. 

 
TABLE I : Hyperparameters 

Hyperparameters Value (Static) Value (Dynamic) 

 Initial Learning rate 0.00075 0.00075 

Decay Steps 50000 50000 

Decay Rate 0.4 0.5 

Hidden layers 128,128 128,128 

Discount factor 0.97 0.97 

Sample batch size 128 128 

Replay buffer size 100000 100000 

Activation function Tanh tanh 

Number of episodes 9000 8000 

Update frequency (time steps) 10 5 

Target network update frequency (time steps) 1 1 

Target update rate 0.01 0.01 

Figure 3. Training loss and returns for static obstacle environment 

Figure 4. Training loss and returns for dynamic obstacle environment 

 

5. RESULTS 

 

A DQN agent is trained using the framework defined in Section. 3. The RL agent is tested by 
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analyzing waypoint tracking and path following followed by adding obstacles between the 

defined path in different situations in a calm water scenario. A starting state is chosen where 

the vessel is oriented along the global X-axis and initialized with unit non-dimensional 

velocity in the surge direction. The ability of the agent to track points in different cases with 

the same initial starting state as mentioned above in each case.  

 

Fig. 5(a) shows that the DQN based controller can maintain a heading, avoid an obstacle 

present on the desired path and regain heading. Fig. 5(b) and Fig. 5(c) demonstrate that the 

DQN agent can also track waypoints at a different heading than the initial heading and also 

avoid the obstacle present in between the path when the obstacle is present in between the 

waypoint. Fig. 6(a) and Fig. 6(b) demonstrate that the RL agent can successfully avoid the 

obstacle even in the case where the obstacle is not on the line joining the waypoints but within 

its natural path as it tracks the goal. It can observed that when the obstacle is large, the agent 

takes action to cross the line joining the waypoints and continue tracking goal when the 

distance to the obstacle is significantly safe. 

 

The results depicted in Link 1, Link 2, Link 3 and Link 4 demonstrate that the DQN controller 

effectively navigates past dynamic obstacles and successfully reaches the intended 

destination.  

                     (a) Case I                           (b)  Case II                                (c)  Case III 

 

Figure 5. Static Obstacle on the line joining the waypoints.  

 

                        (a) Case I                                                            (b) Case II 

                  

 Figure 6. Static Obstacle on path of ships   

https://www.youtube.com/watch?v=fZHgZMI-uwo&list=PLqzNUZRFcEoNAclz_60HAez0RDFItvj56&index=1
https://www.youtube.com/watch?v=m46XgtFVzrk&list=PLqzNUZRFcEoNAclz_60HAez0RDFItvj56&index=2
https://www.youtube.com/watch?v=MRYKCA_XcQw&list=PLqzNUZRFcEoNAclz_60HAez0RDFItvj56&index=3
https://www.youtube.com/watch?v=I0-nAl9LZaQ&list=PLqzNUZRFcEoNAclz_60HAez0RDFItvj56&index=4
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6. DISCUSSIONS 

 

The study evaluated the performance of a model trained on the static obstacle environment in 

scenarios with multiple obstacles. To test the model's ability to navigate through such 

environments, the authors employed the use of collision risk (CR), which was described in  

Figure 7. Square trajectory 

 

Section 2.2. To calculate CR when dealing with static obstacles, the velocity of the obstacle 

was set to zero, while all other calculations remained unchanged. The results are presented in 

Fig. 7, which illustrates the agent's performance on a square trajectory with a side length of 

15L with an obstacle positioned between each waypoint. The findings revealed that the agent 

successfully avoided the obstacles and reached each waypoint along the trajectory.  

 

7. CONCLUSION 

 

This study has implemented a DRL based controller for an autonomous ship to navigate it 

successfully to the desired location while avoiding obstacles. The ability of the DQN agent to 

track waypoints in different scenarios and avoid static and dynamic obstacles is demonstrated.  

 

Future work will include adding environmental effects due to currents and waves, which are 

important for meeting energy efficiency constraints set by the IMO. The RL agent performs 

well in simulations, but its practical effectiveness will be tested by implementing it on an 

ASV and comparing it to traditional controllers. 
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