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ABSTRACT
In recent years, Autonomous Ships have become a focal point for research, specifically emphasizing improv-
ing ship autonomy. Machine Learning Controllers, especially those based on Reinforcement Learning, have
seen significant progress. However, addressing the substantial computational demands and intricate reward
structures required for their training remains critical. This paper introduces a novel approach, “Harnessing
Traditional Controllers for Fast-Track Training of Deep Reinforcement Learning Control Strategies,” aimed at
bridging conventional maritime control methods with cutting-edge DRL techniques for vessels. This innova-
tive approach explores the synergies between stable traditional controllers and adaptive DRLmethodologies,
known for their complexity handling capabilities. To tackle the time-intensive nature of DRL training, we pro-
pose a solution: utilizing existing traditional controllers to expedite DRL training by cloning behavior from
these controllers to guide DRL exploration. We rigorously assess the effectiveness of this approach through
various ship maneuvering scenarios, including different trajectories and external disturbances like winds. The
results unequivocally demonstrate accelerated DRL training while maintaining stringent safety standards.
This approach has the potential to bridge the gap between traditional maritime practices and contemporary
DRL advancements, facilitating the seamless integration of autonomous systems into naval operations, with
promising implications for enhanced vessel efficiency, cost-effectiveness, and overall safety.

ARTICLE HISTORY
Received 15 December 2023
Accepted 8 June 2024

KEYWORDS
Reinforcement learning;
Behavioural cloning;
Autonomous vehicle; Path
following; MMGmodel;
Traditional control

1. Introduction

In recent years, remarkable strides in computational capabilities and
the emergence of innovative Machine Learning (ML) and Deep
Learning (DL) techniques have opened up a vast array of possibilities
for Artificial Intelligence (AI)–based control systems. This trans-
formation has been particularly noticeable in the automation field,
where Reinforcement Learning (RL) has gained substantial traction
as a focal point for research and exploration.

A significant body of literature already delves into utilising Deep
Reinforcement Learning (DRL) controllers for under-actuated ships.
Some contributions have successfully demonstrated the applicability
of these controllers in tasks such as path following (Jose et al. 2023;
Sudha et al. 2023), collision avoidance (Alam et al. 2023), and
even adherence to COLREGs (Collision Regulations at Sea) (Meyer
et al. 2020). However, it is essential to acknowledge that the computa-
tional demands of training these algorithms are substantial (Ladosz
et al. 2022). Since RL algorithms acquire knowledge based on past
experiences, considering states, actions, and reward pairings, the
training process often necessitates an extended duration.

Conventional autopilots rely on line of sight (LOS) guidance
systems and proportional-integral-derivative (PID) controllers to
achieve waypoint tracking for path following (Moreira et al. 2007;
Lekkas and Fossen 2012; Mohan and Somayajula 2023). Traditional
methods are often favoured in scenarios with well-defined paths and
visible obstacles, where system dynamics are predictable, and the
control objectives can be expressed through mathematical relation-
ships. A path-planning algorithm is used on top of this controller

CONTACT Md Shadab Alam m.s.alam@tue.nl

Supplemental data for this article can be accessed online at https://doi.org/10.1080/20464177.2024.2367276.

layer to determine the desired waypoints and path modifications in
the presence of static and dynamic obstacles. However, dynamically
updating the path in real time is a significant challenge that requires
robustness and computational power. With the emergence of AI-
based control strategies, a single controller can perform control and
path planning functions without significant real-time computations.
This approach has shown promise for specific applications, such as
active heave compensation (Zinage and Somayajula 2020, 2021) and
dynamic positioning system (Lee et al. 2020).

Reinforcement Learning (RL) techniques (Sutton andBarto 2018)
have gained prominence for addressing path-planning challenges
across diverse domains. Several studies have explored RL’s potential
in this context, each with distinct contributions. For example, Wang
et al. (2018) applied Q-learning to path planning, successfully avoid-
ing static obstacles but neglecting vessel dynamics. Meanwhile, Shen
et al. (2019) focussed on collision avoidance using deep Q-learning,
albeit with waypoint tracking limitations and a lack of real-world
validation. In contrast, Sivaraj et al. (2022, 2023) employed Deep Q-
networks (DQN) for precise path and heading control of a KVLCC2
tanker in various conditions, outperforming PID controllers. Sim-
ilarly, Sudha et al. (2023) applied Proximal Policy Optimization
(PPO) algorithm, while Jose et al. (2023) utilised DeepDeterministic
Policy Gradient (DDPG) algorithm using Stable Baseline 3 (Raffin
et al. 2021) for ship path following, showcasing their effectiveness
against disturbances and compared it against a PD controller with
ILOS guidance system. Chen et al. (2019) enhanced path follow-
ing for under-actuated cargo ships using Q-learning, outperforming
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traditional algorithms. Woo et al. (2019) developed a DDPG-based
steering controller and evaluated it on an unmanned surface vehi-
cle (WAM-V) but did not compare it to conventional methods.
Additionally, Martinsen and Lekkas (2018) applied DDPG for path
following and transfer learning in multiple vessel scenarios, show-
ing superior rewards compared to Line-of-Sight (LOS) guidance.
Zhou et al. (2019) used DQN for USV path planning, emphasiz-
ing kinematics and collision avoidance. Lastly, Zhao et al. (2019)
implemented the PPO algorithm for path following and COLREGs
adherence, comparing it to the traditional PID controller.

One of the primary challenges in the realm of Reinforce-
ment Learning (RL) lies in the necessity for a substantial number
of interactions with the environment. A recent study by Andres
et al. (2023) addressed this challenge by employing imitation learn-
ing from a replay buffer, thereby enhancing sample efficiency in
Procedurally Generated Content (PCG) environments. Similarly,
Morales and Sammut (2004) successfully demonstrated the func-
tionality of a flight system by combining reinforcement learning and
behavioural cloning. In a comprehensive literature review, Bain and
Sammut (1995) clearly illustrated that by capturing traces of human
behaviour, it is feasible to construct efficient and robust controllers.
Additionally, Model-Based Reinforcement Learning (MBRL) has
also yielded intriguing results. For instance, Lambert et al. (2019)
showcased that low-level control of a quadrotor can be attained
through MBRL techniques. Although they achieved successful
quadrotor control, it’s noteworthy that they did not compare their
MBRL controller with other available controllers in the same study.
In another recent work,Wang et al. (2022) provided a comprehensive
review of the latest advancements in theoretical analyses, algorithms,
and applications of Multi-Agent Reinforcement Learning (MARL)
(Ahmed et al. 2022).

Despite the advancements in utilising DRL-based controllers for
ship path following, several limitations and gaps remain in the
existing literature. Primarily, the incorporation of complex reward
functions requires a human expert. Furthermore, the design pro-
cess can take significant time and effort, as well as a deep under-
standing of the problem at hand, potentially hindering widespread
adoption and applicability. Moreover, the computational demands
associatedwith trainingDRL algorithms, coupledwith the sensitivity
of hyperparameters, pose significant challenges in achieving con-
vergence within a reasonable timeframe. Furthermore, the extended
time required to reach convergence underscores the pressing need
to reduce the number of iterations for efficient training. Addressing
these limitations, our study introduces a novel approach to stream-
line the training process ofDRL-based ship controllers. By leveraging
insights from traditional Dynamic Positioning (DP) controllers to
expedite learning and enhance sample efficiency, our methodology
offers a pragmatic solution to mitigate computational burdens and
accelerate convergence.

The remainder of the paper is structured as follows: In Section 2,
we delve into the ship’s dynamics, the operation of the Reinforce-
ment Learning algorithm, and the associated tools and libraries.
Section 3 provides insights into input and output states and the train-
ing process. In Section 4, we examine the controller’s performance
in calm waters and the presence of winds. We present a compari-
son of the controller with behavioural models in Section 5. Finally,
Section 6 summarises the study’s findings and discussions, along
with a glimpse into future research directions.

2. Background

2.1. Ship dynamics

The study utilises the Krisco Container Ship (KCS) vessel to conduct
simulations. The ship’s dynamics are mathematically represented

using the MMG (Maneuvering Modeling Group) model developed
by Yasukawa and Yoshimura (2015). The model employs 3-DOF
non-linear equations of motion to calculate the ship’s maneuvering
motions, including surge, sway, and yaw. These equations are solved
iteratively at each time step using an implicit solver called Runge-
Kutta. The commanded rudder angle, denoted as δc, is provided as
an input at each time step. The non-dimensional coefficients used
in the model were obtained from Yoshimura and Masumoto (2012).
Alternatively, these coefficients can be determined through system
identification methods applied to data collected from freely run-
ning ship models, as discussed by Vijay and Somayajula (2022) and
Deogaonkar et al. (2023).

The mathematical model of the ship follows the Equation (1).

(m+mx)u̇−mvr −mxGr2 = XH + XR + XP

(m+my)v̇+mxGṙ +mur = YH + YR

(Izz + Jzz)ṙ +mxGv̇+mxGur = NH + NR

(1)

Further dynamics of the ship can be referred fromDeraj et al. (2023),
Alam (2023) and Yasukawa and Yoshimura (2015).

2.2. Proportional-derivative (PD) controller

The Proportional-Derivative (PD) controller is a fundamental con-
trol mechanism widely used in various engineering applications. It
combines two control actions: proportional (P) and derivative (D)
terms. The proportional term provides an output signal proportional
to the current error, which is the difference between the desired set-
point and the actual process variable. The derivative term, on the
other hand, generates an output proportional to the rate of change
of the error. Combining these two terms allows the PD controller to
effectively regulate the system’s behaviour and improve its response
characteristics.

Mathematically, the output of a PD controller can be expressed as:

u(t) = Kpe(t)+ Kd
de(t)
dt

, (2)

Where:

• u(t) is the controller output,
• e(t) is the error signal (difference between setpoint and process

variable),
• Kp is the proportional gain, and
• Kd is the derivative gain.

The proportional gain Kp determines the magnitude of the con-
troller’s response to the current error, while the derivative gain Kd
influences the response based on the rate of change of the error.
Proper tuning of these gains is essential to achieve the desired control
performance, balancing stability, overshoot, and response time.

2.3. ILOS guidance system

The Integrated Line Of Sight (ILOS) guidance system is a navigation
and control mechanism for guiding missiles, rockets, and uncrewed
vehicles (UVs). It combines various sensing, computation, and actu-
ation components to achieve accurate trajectory tracking and target
interception. The ILOS systemderives its name frommaintaining the
line of sight (LOS) between the vehicle and its target while integrating
additional functionalities for enhanced performance.

The operating principle of the ILOS guidance system revolves
around continuously adjusting the vehicle’s trajectory to ensure that
the LOS with the target remains constant. This is achieved by incor-
porating feedback from sensors such as inertial measurement units
(IMUs), GPS receivers, and vision-based systems to estimate the
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vehicle’s position, velocity, and orientation relative to the target. The
guidance algorithm then computes control commands to steer the
car along the desired trajectory, compensating for disturbances such
as wind gusts and target maneuvers.

Mathematically, the guidance law implemented in the ILOS sys-
tem can be expressed as follows:

τ (t) = Kp · e(t)+ Kd · de(t)dt
, (3)

Where:

• τ (t) is the control torque or thrust vector,
• e(t) is the LOS error vector,
• Kp is the proportional gain matrix, and
• Kd is the derivative gain matrix.

2.4. Reinforcement learning

Reinforcement Learning (RL) is a type of machine learning where
agents learn to make optimal decisions by interacting with an envi-
ronment to accumulate rewards (Sutton and Barto 2018). Through
trial and error, the agent learns which actions to take in a particu-
lar state to maximise rewards. This learning environment is known
as a Markov decision process (MDP), suitable for representing ship
dynamics. The agent’s policy, denoted by π(s), governs the action
in a state s. An episode is terminated when a maximum number of
time steps is reached or if any termination condition is satisfied. The
agent’s goal is to maximise the cumulative reward obtained in each
episode, known as the episode returns.

In RL, the value function V(s) is defined as the expected sum
of discounted rewards obtained from a given state, as shown in
Equation (4). Here γ ∈ [0, 1] denotes the discount factor that adjusts
the weightage given to rewards obtained in future time steps.

V(s) = Eπ [rt + γ rt+1 + γ 2rt+2 + · · · + γ T−trT | st = s] (4)

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al. 2015)
is a DRL algorithm that uses the actor-critic framework to extend

Q-learning to a continuous action space. The policy and Q-value
functions are estimated by neural networks, namely the actor and
critic networks. The actor-network directly represents the agent’s
policy in policy gradient methods. The actor-network takes as input
the current state and outputs the action based on the policy encoded
by the network. The critic network takes both the state and action
as input to predict the Q-value. DDPG also makes use of target
networks like the DQN algorithm.

In DDPG, noise is added to the action to aid the agent in explor-
ing more during training. The behavioural policy can be denoted as
follows:

at = μ(st)+ Nt (5)

WhereNt is the noise added to the policy andμ(st) is the current pol-
icy. Noise is usually added through a correlated Ornstein-Uhlenbeck
process or an uncorrelated Gaussian distribution.

The critic network uses squared TD error as its loss function. The
actor network uses the policy gradient loss, which is given below. In
Equation (6), θQ denotes the parameters of the critic network, and
θμ denotes the parameters of the actor-network.

∇θμ J = [∇aQ(s, a | θQ)|s=st , a=μ(st)∇θμμ(s | θμ)|s=st ] (6)

The DDPG algorithm is specified below in Algorithm 1.

3. Methodology

3.1. Observation states

An observationstate in Deep Reinforcement Learning (DRL) refers
to a snapshot or representation of the environment that an agent
uses to make decisions. It contains essential information about the
surroundings, enabling the agent to choose appropriate actions to
achieve its objectives.

In this study, four distinct observation states play a pivotal role in
assisting the agent achieve a successful episode termination. These
four observation states comprise:

Algorithm 1 DDPG algorithm
1: Initialise actor and critic networks and target networks with random parameters θμ and θQ

2: Initialise target networks with parameters θQ
′ ← θQ, θμ

′ ← θμ

3: Initialise an empty experience replay bufferD
4: for Episode= 1, 2 · · ·N do
5: for t = 1, 2 · · ·T do
6: Choose action at according to (5)
7: Obtain reward rt and next state st+1
8: Add transition (st , at , rt , st+1) to replay bufferD
9: End episode if termination conditions are met
10: SampleM random transitions fromD
11: Update the critic network using the loss:
12: L = 1

N
∑

i(yi − Q(si, ai | θQ))2 where
13: yi = ri + γQ′(si+1,μ′(si+1 | θμ′) | θQ′)
14: Update the actor-network:
15: ∇θμJ ≈ 1

N
∑

i ∇aQ(s, a | θQ)
∣∣
s=si ,a=μ(si) ∇θμμ(s | θμ)

∣∣∣
si

16: if time step % target update frequency ==0 then
17: Update target networks:
18: θQ

′ ← τθQ + (1− τ)θQ
19: θμ

′ ← τθμ + (1− τ)θμ′
20: end if
21: end for
22: end for
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(1) Cross-track error
(2) Course angle error
(3) Distance to the destination
(4) Yaw rate

It is worth noting that these four specific observation states, as elu-
cidated in Alam and Somayajula (2024), are both essential and ade-
quate for enabling an under-actuated ship to navigate to its intended
destination effectively.

3.2. Action states

The commanded rudder angle, δc, is the action the agent can choose
at every step. In this study, the DDPG or PD agent gives continuous
action states between [−35◦, 35◦]. So, at every timestep, the RL agent
executes one of the actions. The agent only controls the commanded
rudder angle, and the actual rudder angle (δ) still varies smoothly as
governed by Equations (7) and (8).

TRδ̇ + δ = δc (7)

δ̇ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δc − δ
TR

if
∣∣∣∣δc − δTR

∣∣∣∣ ≤ δ̇max

δ̇max if
δc − δ
TR

> δ̇max

−δ̇max if
δc − δ
TR

< −δ̇max

(8)

In this study, the non-dimensional rudder time-constant TR is taken
as 0.1, and δ̇max is chosen as 5◦ per second for the full-scale ship.

3.3. Rewards

The role of rewards in reinforcementlearning is paramount for guid-
ing the agent’s behaviour. In this study, a reward of+100 is bestowed
upon the agent upon successful arrival at the destination; otherwise,
it remains zero. Mathematically, the reward function is defined as:

reward =
{
+100 if the agent successfully reaches the destination,
0 otherwise.

(9)

The design of the reward function aims to equip the agent with sparse
signals. While such rewards are straightforward to implement, they

Table 1. Hyperparameters for DDPG.

Hyperparameter Value

Actor Learning rate 0.0005
Actor Decay steps 40000
Actor Decay Rate 0.8
Critic Learning rate 0.003
Critic Decay steps 40000
Critic Decay Rate 0.7
Actor Hidden layers (64,64)
Observation fc layer params (32,32)
Action fc layer params (16,16)
Joint fc layer params (64,64)
Discount factor(γ ) 0.95
Sample batch size 128
Replay buffer size 1000000
Maximum time steps 160
Time step interval�t 0.3
PD controller episodes (PD eps) 2000
Total number of episodes 5000
Mean of noise 0
The standard deviation of noise 0.15
Number of noisy episodes 11000
Update frequency(time steps) 10
Target network update frequency 1
Target update rate (τ ) 0.01
Random seed number 65220

provide scant information to the agent during the learning process.
This lack of information may result in prolonged training times or
convergence issues (Hare 2019).

Actions are selected based on maximising the expected reward,
often referred to as the Q-value. The Q-value for a given state-action
pair (s, a) is computed using the Bellman equation (10):

Q(s, a) = E

[
r + γ max

a′
Q(s′, a′) | s, a

]
, (10)

where rt represents the immediate reward obtained after taking
action a in state s at time t, and γ is the discount factor determin-
ing the importance of future rewards. This equation encapsulates the
agent’s foresight, considering both the immediate and future rewards
when selecting actions.

Consequently,the expected reward diminishes if the agent
chooses a longer route instead of the optimal path. This under-
scores the imperative of acquiring efficient policies that yield higher
expected rewards, thereby aligning with the goal of attaining the des-
tination with maximal efficiency. By prioritising actions that lead to

Figure 1. Training process of the RL agent.
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the shortest duration to the destination, the agent implicitly learns to
follow the track effectively, optimising its trajectory toward achieving
the task objective. This reinforcement learning framework ensures
that the agent continually refines its decision-making process to nav-
igate the environment efficiently, even in the absence of explicit
rewards or penalties associated with track adherence.

3.4. Training process

At the start of each episode, a random destination is chosen between
8L and 28L. The agent starts from the origin, having an initial surge
velocity of 1U with no sway velocity and no acceleration in any
direction.

During the training procedure, the PD controller, equipped
with the ILOS guidance system, generates the desired rudder angle
denoted as δc, which the agents then utilise. The observational state
(s), action (a), rewards (r), and future state (s′) are subsequently
recorded in a buffer for future reference as illustrated in Figure 1.
After a specific number of training episodes, the RL agents determine
the commanded rudder angle, which becomes the input for their
training. To facilitate effective learning, the replay buffer is allocated

ample storage capacity to retain the trajectory of the PD controller
until the training process concludes.

It’s worth noting that, aside from receiving a destination reward of
+100, the agent does not receive any other rewards. These rewards do
not influence the trajectory between the starting point and the desti-
nation reward, as seen in previous works such as Chun et al. (2021),
Zhou et al. (2019), Deraj et al. (2023), and others. Given that the
replay buffer contains stored trajectories from the PD controller, the
RL agent learns from these trajectories and explores previously stored
ones.

3.5. Termination condition

These conditions prompt the agent to halt after a specific time
duration or upon meeting particular criteria. In this investigation,
we adopted the identical termination criteria as outlined in Deraj
et al. (2023), which are as follows:

• When the number of timesteps reaches 160.
• When the agents successfully reach its destination.

Figure 2. Training loss and returns for the model.



6 M. S. ALAM AND I. CARLUCHO

• When the agent crosses the destination, but the velocity vector
does not align with the direction of the destination.

4. Results

4.1. Tools and libraries

The code implemented utilises the RL framework offered by the Ten-
sorFlow library called TensorFlow Agents (Hafner et al. 2017). This
framework was specifically developed to establish consistent bench-
marks for RL research. It offers a user-friendly platform for building
RL environments, enabling the deployment and training of custom
RL agents with minimal complexity. It is also important to note that
this study used TensorFlow version 2.9.1, which allows GPU opera-
tions to be made deterministic. This means that the results produced
in the study can be reproduced on any computer by training the agent
with the same random seed value.

4.2. Hyperparameters

The agent undergoes calibration to ensure satisfactory waypoint
tracking by tuning the hyperparameters of the Deep Determin-
istic Policy Gradient (DDPG) algorithm. This calibration process
involves fine-tuning parameters such as the learning rate, exploration
noise, and neural network architecture to optimise the agent’s perfor-
mance in navigating the environment. Specifically, the learning rate
is chosen as an exponentially decaying function to facilitate efficient
convergence during training.

The hyperparameters used for the DDPG model are detailed in
Table 1, while the functions governing these hyperparameters can
be referenced in TensorFlow (2023). These parameters play a crucial
role in shaping the agent’s learning dynamics and influence its ability
to adapt to different environmental conditions.

To evaluate the agent’s performance, various maneuvers for way-
point tracking are simulated, allowing for a comprehensive assess-
ment of its navigation capabilities. The training progress ismonitored
through visualisations of training losses and episode returns, as illus-
trated in Figure 2. These plots provide insights into the agent’s
learning trajectory and its ability to achieve the task objective over
successive episodes.

An interesting observation emerges from analysing the episode
returns: when the PD controller is responsible for providing the
commanded rudder angle, the agent consistently reaches the des-
tination within each episode. However, upon switching to the RL
controller to generate the commanded rudder angle, there is an initial
learning phase during which the agent struggles to reach the des-
tination. This initial difficulty can be attributed to the exploration-
exploitation dilemma inherent in reinforcement learning, where the
agent must balance between exploring new strategies and exploit-
ing known successful actions. During this phase, the agent may
initially choose suboptimal actions, leading to deviations from the
desired trajectory. Nevertheless, with continued training, the agent
gradually learns to navigate towards the destination more effec-
tively, eventually achieving a consistent reward of +100 in every
episode.

Figure 3. Simplemaneuver in CalmWater. (a) EightManeuver (bottomfirst) (dRMSE = 0.3549L), (b) EightManeuver (top first) (dRMSE = 0.3817L), (c) Ellipse Port turn (dRMSE =
0.3975L) and (d) Ellipse Starboard turn (dRMSE = 0.3602L).
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This transition highlights the agent’s capacity to adapt its control
strategy based on environmental feedback and underscores the effec-
tiveness of reinforcement learning in enabling autonomous decision-
making in dynamic environments. Overall, these findings demon-
strate the agent’s capability to learn and refine its navigation skills,
ultimately achieving the desired task objective of waypoint tracking.

The code associated with this training has been made available
through a Github repository

4.3. Calmwater

Upon completing successful agent training, the agent underwent
testing to traverse paths discretised into an optimal number of way-
points, assuming that this selection accurately represents the path.
Notably, information concerning subsequent waypoints is relayed
to the neural network only upon the agent reaching the preced-
ing waypoint, as outlined in the observation specifications (see
Section 3.1), thereby finalising the trajectory. The agent under-
went testing under different maneuvering conditions, as illustrated
in Figures 3 and 4. The depicted trajectories include ‘eight’ and
‘ellipse’ maneuvers in depicted in Figure 3. It is evident from the
Figure 3 that the agent successfully tracked the designated way-
points. To further check the effectiveness of the controller, the
agent was given ‘cardoid’, ‘sine’, and ‘astroid’ maneuvers which are
illustrated in Figure 4. From the figures, it becomes quite evident
that the agent was successfully able to maneuver even the complex
shapes.

The root mean square cross-track error for a given trajectory is
mathematically defined as:

dRMSE =
√√√√ 1

N

N∑
n=1

d2c (n�t) (11)

Here, N represents the number of time steps within the trajectory,
and dc(n�t) signifies the cross-track error’s value at the nth time step.
The figures demonstrate different turning directions, one clockwise
and the other counterclockwise, which result from the inherent flow
asymmetry affecting the rudder.

4.4. Presence of winds

Theagent undergoes further testing under the influence of exter-
nal disturbances, specifically in the form of wind. The wind forces
are integrated into Equation (1) on the right-hand side. These
forces and moments caused by the wind are modelled and added
to Equation (1). The wind’s non-dimensional velocity is Vw, and
its direction is represented by βw. The wind direction is defined
as the angle between the wind’s direction and the positive X-axis
of the Global Coordinate System (GCS). The components of non-
dimensional wind velocity relative to the Body Coordinate System
(BCS) of the ship are defined as follows in Equation (12):

uw = Vw cos (βw − ψ)
vw = Vw sin (βw − ψ)

(12)

Figure 4. Complex maneuver in Calm Water. (a) Cardiod Port turn (dRMSE = 0.4287L), (b) Cardiod Starboard turn (dRMSE = 0.5053L), (c) Sine maneuver (dRMSE = 1.0294L)
and (d) Astroid maneuver (dRMSE = 1.3002L).

https://github.com/Shaadalam9/rl-learning-traditional
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Table 2. Wind force parameters.

Parameter Value

Ax 0.1064
Ay 0.7601
Cwx cos(γw)
Cwy sin(γw)
Cwψ 0.5 sin(γw)
ρa 1.225 kg/m3

ρ 1025 kg/m3

The non-dimensional ship velocity components relative to the wind
can be expressed as urw = u− uw and vrw = v− vw. The magni-
tude of the non-dimensional relative wind velocity Uwr and the
relative wind angle γw with respect to the vessel are determined
byEquation (13):

Uwr =
√
u2rw + v2rw

γw = arctan 2(−vrw,−urw)
(13)

Subsequently, the non-dimensional wind force componentsWx,Wy,
and the non-dimensional wind yaw moment Wψ are computed as

Figure 5. Different maneuver in the presence of wind. (a) Straight Line (dRMSE = 0.1154L), (b) Eight Maneuver (bottom first) (dRMSE = 0.7512L), (c) Ellipse Port Turn (dRMSE =
0.6123L), (d) Cardiod Maneuver (dRMSE = 0.4906L), (e) Sine Maneuver (dRMSE = 1.0542L) and (f ) Astroid Maneuver (dRMSE = 1.2831L).
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Table 3. Wind force cases.

Case Path vw βw dRMSE

1 Line 3 −π/2 0.1254L
2 Eight 6 π/4 0.6196L
3 Ellipse 6 0 0.6123L
4 Cardiod 3 0 0.4906L
5 Sine 3 −π/4 1.0542L
6 Astroid 3 0 1.2831L

depicted in Equation (14):

Wx = Cwx(γw)
ρa

ρ
AxU2

wr

Wy = Cwy(γw)
ρa

ρ
AyU2

wr

Wψ = Cwψ(γw)
ρa

ρ
AyLOAU2

wr

(14)

Here,Ax andAy represent the hull’s non-dimensional lateral and lon-
gitudinal projected areas above water in the yz and xz planes in the
BCS, respectively. Note that the non-dimensional factor for the pro-
jected areas Ax and Ay is taken as Ldem. The non-dimensional wind
coefficients Cwx, Cwy, and Cwψ are assumed to be functions of the

relative wind direction γw. ρa represents the air density, and ρ is the
water density. LOA stands for the non-dimensional overall length of
the vessel, normalised concerning the length between perpendicu-
lars L. Table 2 presents the wind parameter values considered in this
study.

As illustrated in Figure 5, the ship effectively followed waypoints
even when exposed to strong winds. The wind speed and direction
are detailed in Table 3.

5. Discussion

An agent was trained using hyperparameters identical to those used
in generating the results showcased in Figures 3 and 4, as outlined in
detail in Table 1, and utilising the same random seed number. The
only deviation in this instance was the absence of the PD controller
with an ILOS guidance system when populating the replay buffer.
Unlike the previous setup, where both the trajectory of the RL agent
and the guidance information from the PD controller were stored in
the replay buffer, only the trajectory of the RL agent was stored in this
modified configuration.

The outcomes of this modified configuration are depicted in
Figure 6, which illustrates the returns and loss plot. Evidently, the
agent failed to undergo any meaningful learning and was unable to
reach the destination throughout the training phase, as indicated by

Figure 6. Training loss and returns for the model trained without PD controller.
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Figure 7. Comparison of the controller in differentmaneuver. (a) Eight Trajectory (RL: dRMSE = 0.3549L; PD: dRMSE = 0.4189L), (b) Ellipse Trajectory (RL: dRMSE = 0.3602L; PD:
dRMSE = 0.3723L) and (c) Cardiod Trajectory (RL: dRMSE = 0.4910L; PD: dRMSE = 0.4927L).

the returns plot. Examination of the plots reveals a consistent value
of zero for all instances, signifying that the model never acquired
the ability to navigate successfully to the destination. This indi-
cates a significant deficiency in exploration, despite using the same
reward function and training scenarios as before. The loss plot fur-
ther confirms that the agent did not learn anything over the entire
episode duration, as the loss quickly approached zero. It’s worth not-
ing that the difference in the two networks in the DDPG motivates
the DDPG agent to learn the optimal behaviour, but since the reward
was consistently zero, the agent failed to learn anything.

This stands in stark contrast to the earlier scenario, highlighting
the critical role played by the PD controller with an ILOS guidance
system in facilitating effective learning and goal achievement during
the training process. The absence of the guidance system severely
hindered the agent’s ability to explore and learn, underscoring the
importance of integrating guidance mechanisms in reinforcement
learning setups to ensure successful training outcomes.

5.1. Comparisonwith a PD based controller

In this section, we evaluate the path following capabilities of theDeep
Deterministic Policy Optimisation (DDPG) agent in comparison

with a Proportional Derivative (PD) controller. The PD controller
is employed to ensure the convergence of the vessel’s heading. The
proportional (Kp) and derivative (Kd) gains are set to the same val-
ues utilised during the training of the DDPG agent, as outlined in
Section 3.4. These parameter values are specified in Table 1.

The Root Mean Square Error (RMSE) metric reveals that the RL
agent outperformed the PD controller, indicating superior perfor-
mance. The DRL agent’s capacity for both exploration and exploita-
tion facilitated its enhanced performance compared to the conven-
tional PD controller. This is evident from Figure 7(a), where the
trajectory’s RMSE of the RL agent was 18% lower than that of the
PD controller. Additionally, as depicted in Figure 7(b,c), the RL agent
consistently exhibited slightly superior performance compared to the
PD controller. This underscores the efficacy of the DRL approach in
navigating the vessel trajectory.

6. Conclusion and future studies

This investigation delves into the fine-tuning study that addresses
the optimisation of training time for a Deep Reinforcement Learning
(DRL) based controller, particularly in scenarioswhere a pre-existing
controller with proficiency at waypoint tracking exists. The essence
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of this study lies in leveraging the iterative trial-and-error nature of
the DRL agent, which possesses the inherent capability to assimilate.
Since theDRL agent learns through iterative trial and error processes,
it has the potential to acquire a more unrefined trajectory than the
currently available controllers.

The crux of this research extends beyond its current scope, pro-
jecting a future trajectory that involves the future and various other
integrations of diverse controllers to augment the efficacy of the neu-
ral network training further. By introducing multiple controllers,
each proficient in specific aspects of maritime navigation, the train-
ing process stands controllers could be employed to benefit from
a more comprehensive and diverse set of experiences. This diver-
sified training approach has the potential to equip the DRL agent
with a broader range of skills and heightened adaptability to navigate
through dynamic and complex environments.

Moreover, the study envisions an expansion of the training land-
scape by enhancing network training further. Additionally, the intro-
duction of external environmental factors such as waves and cur-
rents. Integrating these real-world complexities into the training reg-
imen can significantly enhance the DRL-based controller’s robust-
ness. Navigating maritime scenarios characterised by the unpre-
dictability of waves and currents poses a distinct set of challenges,
and incorporating these challenges into the training process ensures
that the DRL agent is well-equipped to handle many real-world
scenarios. Another noteworthy dimension explored in this study
involves training the DRL agent to navigate with precision and
a heightened awareness of collision avoidance. Instilling collision
avoidance capabilities in the agent makes it adept at evading station-
ary and moving obstacles, contributing to safer and more reliable
navigation. Additionally, it can be incorporated into the training pro-
cess. The agent can also be trained to evade collisions with both
stationary and moving obstacles and to adhere to COLREGs rules,
which govern the conduct of vessels at sea, which can be instilled
in the DRL agent through training. This regulatory compliance fur-
ther solidifies the agent’s ability to navigate by established maritime
norms and standards.

Furthermore, the research suggests incorporating Automatic
Identification System (AIS) data into the training process. The DRL
agent can emulate more human-like decision-making processes by
utilising AIS-based data. This infusion of real-world maritime data
adds a layer of authenticity to the agent’s learning experience, mak-
ing its decision-making more contextually relevant and reflective of
the intricacies of actual naval operations. Ultimately, this augmenta-
tion elevates the DRL-based controller’s overall efficiency, aligning it
more closely with human decision-making paradigms in maritime
scenarios. Furthermore, training the agent using AIS-based data
can facilitate more human-like decision-making, thus enhancing the
controller’s efficiency.
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