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Figure 1: The 233 countries and territories with dashcam footage in CROWD dataset [2]. The colouration is based on the
logarithm of the total recorded time per country or territory, calculated as log𝑒 (1 + time in seconds), to reduce the skew from
outliers such as the United States (with 707.76 hours available). The black dots show the 2,495 cities in the dataset. The labels
under images show the corresponding YouTube video ID. The frame on the bottom left shows an example of object detection
using YOLOv11x with identified objects such as pedestrians, vehicles, and traffic signs; in this image, the labels ‘id’ refer to the
unique ID of the detected object with the type mentioned later and end with the confidence of detection of the object.

Abstract
Pedestrian crossing behaviour varies globally. This study analyses
dashcam footage from the CROWD dataset, covering 233 countries
and territories, to examine crossing initiation time, crossing speed,
and contextual variables, including detected vehicles, traffic mortal-
ity, GDP, and Gini coefficient. Qatar had the longest mean crossing
initiation time (6.44 s), while China exhibited the fastest crossing
speed (1.69 m/s). On average, worldwide, pedestrians exhibited
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a crossing initiation time of 3.18 s and crossing speed 1.20 m/s.
Crossing speed and crossing initiation time are negatively corre-
lated (𝑟 = −0.18), indicating slower crossings after longer hesita-
tion. Crossing speed is negatively correlated with Gini coefficient
(𝑟 = −0.19) and positively correlatedwith trafficmortality (𝑟 = 0.18).
Similar crossing times in countries with different infrastructures,
such as Bangladesh (3.42 s) and the Netherlands (3.40 s), underscore
the complex interaction between infrastructure and behavioural
adaptation. These findings emphasise the importance of culturally
aware road design and the development of adaptive interfaces for
vehicles.
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and statistics; •Human-centered computing→Human computer
interaction (HCI).

Keywords
Dashcam Videos, Cross-country Analysis, Pedestrian Behaviour,
Crossing Speed, Crossing Initiation Time

ACM Reference Format:
Md Shadab Alam, Marieke H. Martens, and Pavlo Bazilinskyy. 2025. Pedes-
trian Planet: What YouTube Driving from 233 Countries and Territories
Teaches Us About the World. In 17th International Conference on Automotive
User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’25),
September 21–25, 2025, Brisbane, QLD, Australia. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3744333.3747827

1 Introduction
Every year, road traffic accidents claim more than 1.19 million lives
around the world. In particular, more than half of global road traffic
fatalities occur among pedestrians, cyclists, and motorcyclists, es-
pecially in low- and middle-income countries [42]. This highlights
that the burden of road traffic fatalities is not evenly distributed
throughout the world. Significant differences in traffic safety ex-
ist between countries, influenced by factors such as infrastructure
quality, enforcement of regulations, and cultural norms [3, 40]. To
illustrate an example, one may compare two countries: India and
The Netherlands. The Netherlands, characterised by advanced traf-
fic management systems, comprehensive pedestrian infrastructure,
and strict road safety regulations, exhibits substantially lower traf-
fic mortality rates compared to India. India’s rapid urbanisation
combined with less consistent enforcement of traffic regulations
contributes to significantly higher mortality rates, with reported
figures of 4.0 deaths per 100,000 inhabitants in the Netherlands
compared to 15.6 in India, respectively [43]. India alone accounts
for approximately 10% of fatalities in road crashes worldwide. In
this context, analysing why things go wrong on the road in various
parts of the world is crucial to improving global traffic safety.

Research has shown that a significant proportion of road ac-
cidents occur at pedestrian crossings, often due to complex in-
teractions between drivers and pedestrians. For example, studies
have found that pedestrian errors—such as unpredictable crossing
decisions, misjudging vehicle speed, or not using designated cross-
ings—are key contributors to accidents [31, 33]. Similarly, driver
failure to yield, poor visibility, and inadequate infrastructure can
further increase the risk of collisions [9, 22]. Understanding these
dynamics highlights that pedestrian crossing behaviour is an im-
portant factor influencing road safety in diverse urban settings.
Therefore, a comprehensive investigation of pedestrian behaviour,
particularly in crossing situations, is essential for developing effec-
tive interventions and policies that reduce accidents and save lives.
To mitigate these risks, recent developments in automated vehi-
cles (AVs) and advanced driver assistance systems (ADAS) leverage
smart sensors and active safety features to better detect and re-
spond to VRUs. By compensating for potential human errors, these
technologies can help prevent accidents; however, this requires a
deep understanding of pedestrian behaviour under a wide range of
environmental and cultural conditions [24, 30, 33, 48]. Therefore,
analysing how pedestrians behave in diverse real-world contexts

is essential for developing robust, context-aware AV and ADAS
systems.

Although research has been done on pedestrian crossing be-
haviour [16, 37], much of this knowledge is limited to controlled
environments, single-city studies, or limited cultural contexts [31].
Shi et al. studied pedestrian behaviour, such as walking speed, wait-
ing delay, and clustering, at a single crossing in Beijing, China,
through which it is obtained by counting and measuring with a
video camera [35]. Similarly, Deb et al. conducted a survey in the US
with 50 survey items that allowed respondents to rate the frequency
with which they engage in different types of road use behaviour as
pedestrians [9]. The validation study was conducted on 425 partici-
pants (228 males and 197 females) with the age between 18 and 71.
Rasouli et al. gathered data from 5 different countries, collecting
a total of 240 hours of footage, and identified 2,400 pedestrians to
understand how pedestrians communicate intent (especially before
crossing) [30]. The narrow geographic coverage, small sample sizes,
and use of artificial or highly controlled settings in these studies
restrict the ability to develop truly generalisable algorithms for
pedestrian detection, tracking, and prediction.

The researchers have previously studied specific variables associ-
ated with pedestrian behaviour, such as speed of crossing. For exam-
ple, Goh et al. conducted a study in Kuala Lumpur, Malaysia, with
1,579 participants in 4 different locations [15]. They concluded that
children pedestrians (<20 years) are the fastest group, and elderly
pedestrians (>55 years) are the slowest group in terms of pedestrian
crossing speed with a population average speed of 1.31 m/s at sig-
nalised crossing and 1.39 m/s at unsignalised crossing. At the same
time, Duim et al. conducted a study with 1,911 participants with
an average age of 70.1 years in São Paulo, Brazil [10]. They found
that their average walking speed was 0.75 m/s (95%CI 0.73; 0.84).
However, while valuable in understanding pedestrian behaviour
in specific locations and age groups, these studies are limited to
particular cities or populations. As a result, they do not enable a
comprehensive comparison of pedestrian behaviour across different
countries, cultures, and infrastructure contexts, highlighting the
need for broader, cross-national analyses such as the one presented
in this paper.

Another variable of interest is the crossing initiation time, which
in this study is defined as the time interval between when a pedes-
trian is identified as intending to cross the road and when they
actually begin to step onto the roadway. This metric captures the
delay between the formation of the intention to cross and the initia-
tion of the crossing action. Previous studies have typically anchored
the crossing initiation time to external events, such as the onset
of a traffic signal change [39] or the appearance of a safe gap in
traffic [38]. Wickramasinghe et al. studied pedestrians who crossed
the road in three different pedestrian crossings, namely, signal con-
figurations: (1) traditional red and green phase, (2) countdown with
time to start crossing phase, and (3) countdown without time to
start crossing phase [41]. The authors then provided a multiregres-
sion model to estimate the time to start crossing the road. Lobjois
& Viola examined the effects of age, vehicle speed, and time con-
straints on the selection of gaps in crossing decisions, finding that
older pedestrians (aged 60 to 80 years) tend to choose larger gaps to
compensate for longer crossing times, yet may experience reduced
safety margins at higher car speed, for example, unsafe decision
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Figure 2: Mean pedestrian crossing speed (in m/s). For each country or territory, values represent the average of daytime and
nighttime speeds (if both are present); if only daytime or nighttime data are available, the respective value is shown.

rates (i.e., accepting a gap shorter than their own crossing time) in-
creased from 3.1% at 40 km/h to 8.6% at 60 km/h [22]. Furthermore,
Simeunović et al. found that the presence of a countdown timer
at pedestrian crossings, which tells people exactly how many sec-
onds remain before vehicles get a green light, actually encourages
more pedestrians to start crossing after the “walk” signal has ended
(during what is called the “clearance phase”). Specifically, 65.7% of
pedestrians began crossing during this period when a timer was
present, compared to only 22% at crossings without a timer. This
behaviour also resulted in pedestrians spending 1.3 times longer
on the road during the red signal, increasing their exposure to
traffic [36]. Their analysis further suggests that, although showing
pedestrians exactly how much time remains to cross (for example,
with a countdown timer) can help people cross the street with less
waiting, it can also unintentionally encourage riskier behaviour,
such as starting to cross when there is not actually enough time
left, if pedestrians overestimate how quickly they can cross before
the light changes.

These approaches, although methodologically sound for their
specific contexts, do not capture the rich diversity of global urban
environments, thereby hampering the development of truly general-
isable models for pedestrian detection, tracking, and prediction. The
increasing ubiquity of video hosting platforms, notably YouTube
(https://www.youtube.com), has fundamentally transformed the
means by which researchers can acquire real-world data. These
platforms offer a large repository of publicly available content

that serves a multitude of analytical purposes. Recent studies have
shown that large-scale dashcam video data, as employed by Franchi
et al. [13], can effectively capture the diverse characteristics of
urban traffic in different cities, providing compelling motivation
for our approach using footage obtained from YouTube. Similarly,
video-based research such as that conducted by Rao et al. [29] has
successfully delineated the subtleties of pedestrian crossing deci-
sions, thus underscoring the value of dashcam footage in analysing
cross-cultural behaviours. These platforms afford a unique opportu-
nity to record and scrutinise authentic urban scenes ranging from
pedestrian dynamics to traffic behaviour across varied geographical
and cultural contexts. In contrast to controlled field studies, freely
available videos on platforms such as YouTube encapsulate sponta-
neous and natural interactions, rendering them invaluable for the
development of scalable and cost-effective methodologies to study
complex urban phenomena. In this context, Alam et al. [2] have
compiled a dataset, entitled “City Road Observations With Dash-
cams (CROWD)”, applying computer vision techniques to dashcam
videos, allowing a comparative analysis of pedestrian behaviour in
different cities around the world.

1.1 Aim of Study
The purpose of the study is to provide a comprehensive global anal-
ysis of pedestrian behaviour using the City Road Observations
With Dashcams (CROWD) dashcam footage from 233 countries
and territories. Using its YOLO-based object tracking, it quantifies

https://www.youtube.com
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Hyperparameter Value Description
track high thresh 0.25 Threshold for the first association during tracking.
track low thresh 0.1 Threshold for the second association during tracking.
new track thresh 0.25 Threshold to initialise a new track if the detection does not match any existing tracks.
track buffer 30 Number of frames lost tracks should be kept alive before getting removed.
match thresh 0.8 Threshold for matching tracks.
fuse score True Determines whether to fuse confidence scores with IoU distances before matching.

Table 1: Tracking hyperparameters and their descriptions.

Parameter Value Description
min shared frames 5 Minimum number of frames where both person and vehicle are present for comparison.
dist thresh 80 Maximum distance (in pixels) between person and vehicle centers to be considered “moving together”.
similarity thresh 0.8 Minimum cosine similarity threshold for movement direction to be considered “similar” (range: -1 to 1).
overlap ratio 0.7 Fraction of overlapping frames where proximity and movement similarity must be satisfied.

Table 2: Parameters for trajectory-based filters. The first three parameters correspond to the filter that determines whether a
detected person is likely a rider (bicycle or motorcycle) and should be excluded from pedestrian analysis. overlap ratio is
used by the filter that removes pedestrians whose trajectories may mimic a crossing event due to camera movement.

Figure 3: Mean pedestrian crossing initiation time (in s). For each country or territory, values represent the average of daytime
and nighttime times (if both are present); if only daytime or nighttime data are available, the respective value is shown.

key metrics, such as the crossing initiation time and the speed of
crossing, to capture diverse behaviour across varied cultural, so-
cioeconomic, and infrastructural environments. By investigating
the relationships and distributions of these metrics worldwide, this

study demonstrates how the CROWD dataset can be used as a pow-
erful tool for cross-cultural pedestrian research. Our work serves
as a use case that shows how such large-scale real-world video
data can generate valuable insights for urban planning and for the
future integration and safety of AVs in diverse global contexts.
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Figure 4: Mean pedestrian crossing speed by country or territory, shown separately for daytime (red) and nighttime (blue)
observations. The mean and standard deviation (SD) of the overall crossing speed are displayed next to the country name,
followed by the daytime (D) and nighttime (N) values (mean ± SD) in parentheses. Bars are sorted in ascending order based on
the daytime mean speed for each country; if daytime data are unavailable, nighttime values are used to order.

2 Method
The study uses the videos referenced in the CROWD dataset [2]
(version as of 24 July 2025), which includes dashcam footage sourced
from publicly accessible YouTube content, to examine pedestrian

behaviour in urban driving environments. The dataset provides
information for each video or video segment, whether it was cap-
tured during the day or at night, allowing for analyses that directly
compare pedestrian behaviour under different lighting conditions.
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Figure 5: Mean pedestrian crossing initiation time by country or territory, shown separately for daytime (red) and nighttime
(blue) observations. The mean and standard deviation (SD) of the overall crossing initiation time are displayed next to the
country name, followed by the daytime (D) and nighttime (N) values (mean ± SD) in parentheses. Bars are sorted in ascending
order based on the daytime mean speed for each country; if daytime data are unavailable, nighttime values are used to order.

In total, 8,494 videos were extracted with a total of 4,122.28 hours
of footage that span 233 countries and territories (see Figure 1).

To analyse pedestrian behaviour, we first applied the You Only
Look Once (YOLOv11x) object detection algorithm [17, 32] with
the ByteTrack tracker [49] (see Table 1), using a confidence score

threshold of 0.7. This enabled robust detection and tracking of
various objects, including pedestrians, in video frames. Only video
clips captured in cars were retained for analysis, as pedestrian
reactions can vary by vehicle type [11].
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Figure 6: Spearman correlation matrix of pedestrian behaviour, traffic characterises, and socio-economic factors for 124
countries and territories included in analysis.

Using the generated object tracks, we identified pedestrian cross-
ing events. A crossing was operationally defined as an event in
which a pedestrian’s horizontal trajectory moved from below 45%
to above 55% of the frame width, or vice versa, indicating a lateral
traversal across the road. To reduce the inclusion of irrelevant move-
ments, filters were applied to the detected crossings. Events were
excluded if the crossing was made by a rider (motorbike or bicycle),
or if the apparent crossing was caused by camera movement—such
as when a car turns and the resulting pixel movement of nearby
individuals mimics a crossing event—as these can result in false pos-
itives. It should be noted that the YOLOv11x model detects “person”,
“bicycle”, and “motorcycle” as separate object classes, rather than
explicitly identifying riders. Therefore, additional trajectory-based
filtering was necessary to distinguish between actual pedestrians
and individuals riding bicycles or motorcycles. The specific logic
and implementation details of these filters are further described
by Alam et al. [2], with the corresponding parameter settings sum-
marised in Table 2.

For all events passing these filters, the distances based on pixels
were translated into real-world units using the national average
human height as a reference scale in each frame [51]. This conver-
sion allowed for a more meaningful estimation of parameters such
as the crossing distance and speed, although individual height vari-
ability and camera perspective can still introduce some uncertainty.
Next, thresholds were applied to exclude implausible measurements:
crossing speed values lower than 0.5 m/s and greater than 2.5 m/s

were excluded, effectively removing outliers such as skateboarders
or cyclists, as recommended in previous work [7, 20, 26]. Extremely
slow crossings could reflect rare cases, such as individuals with
severe mobility impairments [4], people carrying heavy loads [7],
or distracted pedestrians, but are likely to result from tracking er-
rors in the context of the dataset. For the analysis of the crossing
initiation time, only values between 1 s and 150 s (following [12])
were retained. To verify movement at the beginning of the crossing,
we checked for movement at three evenly spaced intervals within
the first second (e.g., at the 10th, 20th, and 30th frame for a video
with 30 frames per second). A margin of ±0.1 times the mean height
was allowed when assessing movement at these intervals to com-
pensate for potential camera motion. If the pedestrian remained
within this margin at all three checks during the first second, the
person was classified as static, and the measurement of crossing
initiation time began. The same procedure was then used for each
subsequent second, with the pedestrian’s position checked at three
evenly spaced intervals. As long as the position remained within
the margin, the pedestrian continued to be considered stationary
and this period was included in the crossing initiation time. Once
the person moved beyond the margin at any of the checks, the static
period ended and the total duration up to that point was taken as
the crossing initiation time.

Only after all relevant crossing events and their metrics were
determined did we apply additional filters based on duration of
footage and vehicle type. Dashcam footage from cities from the



AutomotiveUI ’25, September 21–25, 2025, Brisbane, QLD, Australia Alam et al.

���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

����� ���� ����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� �����

����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����� ���� ���� ����� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

&
URVVLQJ�VSHHG

&
URVVLQJ�LQLWLDWLRQ�WLP

H

'
HWHFWHG�FURVVLQJV

'
HWHFWHG�SHUVRQV

'
HWHFWHG�ELF\FOHV

'
HWHFWHG�FDUV

'
HWHFWHG�P

RWRUF\FOHV

'
HWHFWHG�EXVHV

'
HWHFWHG�WUXFNV

'
HWHFWHG�DOO�P

RWRU�YHKLFOHV

'
HWHFWHG�FHOOSKRQHV

'
HWHFWHG�WUDIILF�VLJQV

&
URVVLQJV�Z

LWKRXW�WUDIILF�OLJKW

7UDIILF�P
RUWDOLW\

/LWHUDF\�UDWH

*
LQL�FRHIILFLHQW

0
HGLDQ�DJH

0HGLDQ�DJH

*LQL�FRHIILFLHQW

/LWHUDF\�UDWH

7UDIILF�PRUWDOLW\

&URVVLQJV�ZLWKRXW�WUDIILF�OLJKW

'HWHFWHG�WUDIILF�VLJQV

'HWHFWHG�FHOOSKRQHV

'HWHFWHG�DOO�PRWRU�YHKLFOHV

'HWHFWHG�WUXFNV

'HWHFWHG�EXVHV

'HWHFWHG�PRWRUF\FOHV

'HWHFWHG�FDUV

'HWHFWHG�ELF\FOHV

'HWHFWHG�SHUVRQV

'HWHFWHG�FURVVLQJV

&URVVLQJ�LQLWLDWLRQ�WLPH

&URVVLQJ�VSHHG

���� ���� ����� ����� ����� ����� ���� ����� ����� ����� ����� ����� ����� ����� ����� ���� ����

���� ���� ���� ���� ���� ���� ���� ����� ����� ���� ���� ���� ���� ����� ����� ���� �����

����� ���� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ����� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ����� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ����� ����� ���� ����� ���� ���� ���� ���� ���� ���� ����� ����� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ����� ���� ���� ����

����� ���� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� ���� ����

����� ����� ����� ���� ����� ���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ����

����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

&
URVVLQJ�VSHHG

&
URVVLQJ�LQLWLDWLRQ�WLP

H

'
HWHFWHG�FURVVLQJV

'
HWHFWHG�SHUVRQV

'
HWHFWHG�ELF\FOHV

'
HWHFWHG�FDUV

'
HWHFWHG�P

RWRUF\FOHV

'
HWHFWHG�EXVHV

'
HWHFWHG�WUXFNV

'
HWHFWHG�DOO�P

RWRU�YHKLFOHV

'
HWHFWHG�FHOOSKRQHV

'
HWHFWHG�WUDIILF�VLJQV

&
URVVLQJV�Z

LWKRXW�WUDIILF�OLJKW

7UDIILF�P
RUWDOLW\

/LWHUDF\�UDWH

*
LQL�FRHIILFLHQW

0
HGLDQ�DJH

0HGLDQ�DJH

*LQL�FRHIILFLHQW

/LWHUDF\�UDWH

7UDIILF�PRUWDOLW\

&URVVLQJV�ZLWKRXW�WUDIILF�OLJKW

'HWHFWHG�WUDIILF�VLJQV

'HWHFWHG�FHOOSKRQHV

'HWHFWHG�DOO�PRWRU�YHKLFOHV

'HWHFWHG�WUXFNV

'HWHFWHG�EXVHV

'HWHFWHG�PRWRUF\FOHV

'HWHFWHG�FDUV

'HWHFWHG�ELF\FOHV

'HWHFWHG�SHUVRQV

'HWHFWHG�FURVVLQJV

&URVVLQJ�LQLWLDWLRQ�WLPH

&URVVLQJ�VSHHG

Figure 7: Spearman correlation matrix of pedestrian behaviour, traffic characterises, and socio-economic factors in North
America (10 countries and territories, top) and Europe (40 countries and territories, bottom).
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country or territory was included if there was at least 30 minutes
of available driving footage to adequately represent a range of
urban scenarios. Using the CROWD dataset metadata, the analyses
were stratified by time of day (day versus night). Inclusion for each
period was determined independently: a country or territory was
included in the daytime or nighttime analysis if at least 100 valid
pedestrian crossings were detected during that respective period.
For example, if a location met the threshold for daytime crossings
but not for nighttime, only its daytime data were included. This
approach guarantees that each subset of the analysis—daytime
and nighttime—is based on robust and sufficiently sized samples,
supporting meaningful cross-period comparisons.

The administrative and dependent territories were treated as
separate analysis units whenever they possessed unique ISO 3166-1
alpha-3 codes (i.e., “ISO-3”, https://www.iso.org/iso-3166-country-
codes.html). For the purposes of continent-based analysis, each
territory was grouped according to its geographic location, not its
sovereign affiliation (for example, French Guiana was considered
part of South America rather than Europe, despite being an overseas
department of France).

To enhance our analysis, we incorporated several key statisti-
cal indicators for each country or territory. These include popu-
lation size (sourced from https://restcountries.com), road traffic
mortality rates measured as the number of traffic-related deaths per
100,000 inhabitants (https://data.worldbank.org/indicator/SH.STA.
TRAF.P5), and income inequality as reflected by the Gini coefficient
(https://restcountries.com). We also included regional literacy rates
(https://data.worldbank.org/indicator/SE.ADT.LITR.ZS) and the me-
dian age of the population (https://simplemaps.com/data/countries).
Together, these variables provide socioeconomic context for inter-
preting patterns in pedestrian behaviour across different regions.

3 Results
Following the filtering process detailed in section 2, the resulting
data based on CROWD comprise 3,388.88 hours of dashcam video
from 124 countries and territories. The distributions of the crossing
speed and the crossing initiation time for the filtered dataset are
shown in Figure A3. The country with the maximum duration of
the video is the United States, with 707.76 hours of footage, while
the country with the minimum duration is Niger, with 0.65 hours.
The average video duration per country is 27.32 hours (SD = 67.59).

The analysis of the filtered subset yielded several notable results.
The mean pedestrian crossing speed among the countries and ter-
ritories included is 1.20 m/s (SD = 0.14), where each country or
territory contributes a single mean value, regardless of the number
of pedestrian crossings detected within it. In our analysis, China
exhibited the highest pedestrian crossing speed observed (1.69 m/s),
while Chile showed the lowest (0.88 m/s). Figure 2 illustrates the
average speed of pedestrian crossings in the countries and terri-
tories analysed. Figure 4 shows the distribution of the crossing
speed during the day and night in these locations. The largest ab-
solute differences between daytime and nighttime crossing speeds
were observed in Germany (0.19 m/s, daytime faster), Cambodia
(0.18 m/s, daytime faster), Egypt (0.17 m/s, daytime faster), Brazil
(0.16m/s, daytime faster), and Italy (0.13m/s, daytime faster). These
values represent the absolute differences between the mean speeds

recorded during the day and at night, with the direction of the differ-
ence indicated for each country. In contrast, countries or territories
with minimal differences between daytime and nighttime crossing
speeds include the United States (0.04 m/s, nighttime faster), India
(0.04m/s, daytime faster), Russia (0.04m/s, nighttime faster), China
(0.02 m/s, daytime faster) and Gambia (0.02 m/s, daytime faster).

Similarly, in our analysis, the average pedestrian crossing initia-
tion time is 3.18 s (SD = 0.87). Among the countries and territories
included, pedestrians in Qatar have the longest observed cross-
ing initiation time (6.44 s), while those in China have the shortest
(1.61 s). Figure 3 illustrates the average crossing initiation time for
pedestrians before starting the crossing in the locations analysed,
and Figure 5 shows the distribution of the initiation time during the
day and night in these countries and territories. The locations with
the greatest absolute differences between daytime and nighttime
initiation times include Brazil (3.31 s, nightime longer), Japan (2.53 s,
daytime longer), India (1.22 s, daytime longer), South Korea (0.89 s,
nighttime longer) and Morocco (0.80 s, daytime longer). In contrast,
the smallest differences were found in Italy (0.09 s, daytime longer),
Russia (0.09 s, nighttime longer), the United Kingdom (0.06 s, day-
time longer), the United States (0.04 s, daytime longer) and China
(0.03 s, nighttime longer).

Figure 6 presents the correlation matrix based on the Spearman
rank correlation coefficient among pedestrian characteristics, de-
tected objects, and socioeconomic factors. The heatmap shows that
the detected crossings are highly positively correlated with the
detected persons (𝑟 = 0.79), bicycles (𝑟 = 0.81), cars (𝑟 = 0.80),
motorcycles (𝑟 = 0.76), buses (𝑟 = 0.78), trucks (𝑟 = 0.75) and
traffic signs (𝑟 = 0.76). The detected cars are strongly correlated
with the total number of motor vehicles (𝑟 = 0.96) and with the
traffic signs (𝑟 = 0.83). Traffic mortality exhibits high positive
correlations with detected persons (𝑟 = 0.86), cars (𝑟 = 0.79), to-
tal number of motor vehicles (𝑟 = 0.84), and the Gini coefficient
(𝑟 = 0.85). The Gini coefficient is also positively correlated with
detected persons (𝑟 = 0.82) and cars (𝑟 = 0.88). The median age
shows a positive correlation with the detected persons (𝑟 = 0.68)
and the cars (𝑟 = 0.87). Crossing speed is positively correlated with
detected persons (𝑟 = 0.15), but negatively correlated with cell-
phones (𝑟 = −0.12), traffic signs (𝑟 = −0.36), the Gini coefficient
(𝑟 = −0.19), median age (𝑟 = −0.31), and crossing initiation time
(𝑟 = −0.18). Crossing initiation time is negatively correlated with
the detected cars (𝑟 = −0.15) and the median age (𝑟 = −0.09), but
positively correlated with detected motorcycles (𝑟 = 0.25).

Furthermore, Figure 7 presents the correlation matrices for the
same behavioural and contextual attributes in North America and
Europe, respectively. In North America, the correlation between
median age and detected crossing is (𝑟 = 0.92), and with detected
persons (𝑟 = 0.67); In Europe, these values are (𝑟 = 0.24) and
(𝑟 = 0.51), respectively. The correlation between crossing speed
and detected motorcycles is (𝑟 = −0.44) in North America and
(𝑟 = 0.09) in Europe; with detected bicycles, (𝑟 = −0.72) in North
America and (𝑟 = −0.27) in Europe; and with detected cars, (𝑟 =

−0.77) in North America and (𝑟 = −0.18) in Europe. For crossing
initiation time, its correlation with the detected bicycles is (𝑟 =

0.10) in North America and (𝑟 = 0.24) in Europe; with detected
motorcycles, (𝑟 = 0.21) and (𝑟 = 0.17), respectively; and with
the median age, (𝑟 = −0.28) in North America and (𝑟 = −0.12)

https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
https://restcountries.com
https://data.worldbank.org/indicator/SH.STA.TRAF.P5
https://data.worldbank.org/indicator/SH.STA.TRAF.P5
https://restcountries.com
https://data.worldbank.org/indicator/SE.ADT.LITR.ZS
https://simplemaps.com/data/countries


AutomotiveUI ’25, September 21–25, 2025, Brisbane, QLD, Australia Alam et al.

in Europe. Furthermore, the correlation between crossing speed
and crossing initiation time is (𝑟 = −0.14) in North America and
(𝑟 = 0.08) in Europe, and the correlation between traffic mortality
and detected cars is (𝑟 = 0.67) in North America and (𝑟 = 0.79) in
Europe.

In addition, the scatter plots presented in Figure 8 and Figure 9
reveal significant variations between countries and territories with
respect to socio-economic and safety indicators. Figure 8 shows a
negative relationship (𝑟 = −0.19) between the Gini coefficient and
the crossing speed. Furthermore, Figure 9 illustrates the variability
in crossing speed relative to the mortality rates of national traffic
with a positive correlation (𝑟 = 0.18).

The results for the crossing speed and the crossing initiation
time with stricter filter values (at least 10 hours of footage and at
least 500 valid pedestrian crossing detections, daytime or nighttime,
per country or territory) are shown in Figure A1 and Figure A2,
respectively (see Appendix).

4 Discussion
The findings presented in this study highlight significant global vari-
ations in pedestrian crossing behaviour and underline the influence
of regional and country-specific socioeconomic and infrastructure
factors. The mean crossing speed (1.20 m/s) aligns closely with
previous studies of pedestrian behaviour [4, 27, 44], but the sub-
stantial deviations observed in countries and territories such as
China (highest speed, 1.67 m/s) and Chile (lowest speed, 0.88 m/s)
reflect considerable cultural and infrastructure differences.

A global analysis of pedestrian crossing speed reveals that neigh-
bouring countries and territories often cluster around a similar av-
erage walking speed, a pattern strongly influenced by comparable
economic status and median age profiles (see Figure 4). For exam-
ple, in West and Central Africa, nations such as Nigeria (1.25 m/s),
Cameroon (1.33 m/s), and the Central African Republic (1.28 m/s)
show brisk walking speed values, consistent with their young me-
dian age (19.2, 18.8, and 20.2 years, respectively) and developing
economies. Western European neighbours like Germany (1.10 m/s),
France (1.14 m/s), the Netherlands (1.16 m/s), and Belgium (1.09 m/s)
fall into a moderate-speed group, reflecting both higher-income
economies and older median age (46.7, 42.4, 42.2, and 41.9 years,
respectively), which are associated with more cautious pedestrian
movement. A similar pattern is observed in Asia, where Japan
shows one of the lowest speed values worldwide at 0.88 m/s, closely
matched by other developed and ageing societies such as South
Korea (0.99 m/s) and Singapore (0.92 m/s), all of which have a
high median age (49.5 for Japan, 43.7 for South Korea, and 38.9 for
Singapore). In contrast, emerging Asian economies with younger
populations—such as India (1.30 m/s), Nepal (1.28 m/s), and Vietnam
(1.24 m/s)—cluster at higher crossing speed values, reflecting their
demographic profiles and different traffic conditions (median age:
29.5 for India, 27.1 for Nepal, and 32.5 for Vietnam).

Pedestrian crossing initiation times reveal strong regional and
economic similarities among neighbouring countries (see Figure 5).
For example, Austria (2.07 s), Andorra (2.01 s), and Estonia (2.05 s)
show remarkably close values, which can be linked to their ad-
vanced economies, well-planned pedestrian infrastructure, and sim-
ilar median age (44.8, 48.1 and 44.7). A contrasting pattern emerges

in Southeast Asia, where Indonesia (5.29 s), Philippines (5.47 s),
and Cambodia (5.37 s) display some of the slowest pedestrian ini-
tiation speed values, likely due to dense traffic environments and
limited infrastructure. Likewise, South Korea (3.48 s) and Japan
(4.60 s) show moderate initiation times, which may be related to
their structured traffic systems and ageing populations that tend
to exercise greater caution (49.5 for Japan, 43.7 for South Korea).
Qatar has the longest recorded initiation time at 6.44 s, a result that
may be influenced by extremely car-centric urban design, limited
pedestrian infrastructure, high vehicle speed, and socioeconomic
factors such as low pedestrian activity due to a predominantly
high-income, vehicle-owning population.

The negative correlation between crossing speed and crossing
initiation time (𝑟 = −0.18) suggests that pedestrians who hesi-
tate longer before crossing tend to move more slowly, potentially
reflecting greater caution or uncertainty in more challenging or
ambiguous traffic conditions. In addition, the presence of traffic
signs shows a negative association with crossing speed (𝑟 = −0.36),
which could suggest that pedestrians are more cautious and reduce
speed in regulated or more complex environments. Higher income
inequality, measured by the Gini coefficient (𝑟 = −0.19) and median
age (𝑟 = −0.31) are also associated with slower crossing speed val-
ues, pointing to broader demographic and social influences, such as
increased vulnerability, lower mobility, or differences in pedestrian
infrastructure. In contrast, the positive correlation with the number
of detected persons (𝑟 = 0.15) indicates that pedestrians are likely
to cross faster when more people are present, perhaps due to a
sense of collective safety or social facilitation.

Similarly, the crossing initiation time is negatively correlated
with the number of detected cars (𝑟 = −0.15) and the median age
(𝑟 = −0.09), suggesting that pedestrians are likely to make quicker
crossing decisions in environments with more vehicular traffic or
where populations are younger, possibly due to increased urgency
or greater mobility. In contrast, a positive correlation with the
presence of motorcycles (𝑟 = 0.25) indicates that pedestrians tend
to wait longer before crossing when motorcycles are present, which
may reflect the perceived unpredictability or risk associated with
these vehicles.

Interestingly, our study reveals that certain countries and ter-
ritories exhibit remarkably similar pedestrian crossing times de-
spite differing infrastructure contexts. For example, Bangladesh
and the Netherlands have average crossing times of approximately
3.42 and 3.40 s, respectively. In the Netherlands, well-developed
road infrastructure and clear pedestrian priority at crossings con-
tribute to reduced crossing initiation time [18]. In contrast, in
Bangladesh, the lack of formal pedestrian infrastructure often re-
quires an opportunistic approach to crossing the road [34]. Pedes-
trians in Bangladesh typically assess traffic conditions looking left
and right before deciding to cross when they perceive a sufficient
gap [46]. This behaviour includes strategies such as accelerating
your pace or stopping mid-crossing to allow vehicles to pass, as
noted in studies on pedestrian behaviour in developing countries
and territories [47]. Such adaptive behaviour can introduce vari-
ability and noise into the measurements of crossing initiation time,
highlighting the complex interaction between the quality of the
infrastructure and the decision-making processes of pedestrians.
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Figure 8: Relation between Gini coefficient and speed of crossing. Labels show the ISO-3 codes of countries and territories.

The correlation matrices for North America and Europe reveal
clear regional differences in how contextual and behavioural at-
tributes interact. In North America, the median age is strongly
positively correlated with both detected crossings (𝑟 = 0.92) and
detected persons (𝑟 = 0.67), indicating that areas with older popu-
lations generally experience higher levels of pedestrian activity. In
contrast, these relationships are much less pronounced in Europe
(𝑟 = 0.24 and 𝑟 = 0.51, suggesting that age exerts a weaker influence
on pedestrian patterns there. Crossing speed in North America also
shows strong negative correlations with the detected motorcycles
(𝑟 = −0.44), bicycles (𝑟 = −0.72), and cars (𝑟 = −0.77), meaning
that an increased presence of vehicles is associated with slower
pedestrian movement. In Europe, these associations are weaker or
almost negligible, especially for motorcycles (𝑟 = 0.09), highlight-
ing a decreased impact of vehicular context on pedestrian speed.
Furthermore, the link between crossing speed and crossing initia-
tion time is only slightly negative in North America (𝑟 = −0.14) and
almost absent in Europe (𝑟 = 0.08), indicating a minimal association
between how quickly pedestrians begin to cross and the speed at
which they cross.

Substantial correlations were found between traffic mortality
and detected cars in both North America (𝑟 = 0.67) and Europe
(𝑟 = 0.79), underscoring the connection between higher vehicle
volumes and traffic deaths. Together, these results illustrate that de-
mographic and traffic-related factors are more closely interrelated
in North America than in Europe. This may reflect less pedestrian-
orientated infrastructure or a higher perception of risk in North

America, making behavioural attributes more sensitive to contex-
tual variables. In contrast, the weaker correlations observed in
Europe could be attributed to a more uniform pedestrian infrastruc-
ture, a stronger safety culture, or other social factors that buffer the
influence of context on behaviour.

The scatter plots in Figure 8 and Figure 9 reveal a notable varia-
tion between countries in pedestrian behaviour in relation to so-
cioeconomic and safety indicators. The weak negative correlation
(𝑟 = −0.19) between the Gini coefficient and the speed of crossing
suggests that in countries with higher income inequality, pedestri-
ans may cross more slowly, possibly due to poorer infrastructure,
less investment in pedestrian facilities, or a greater sense of vulner-
ability among disadvantaged groups. In contrast, the weak positive
correlation (𝑟 = 0.18) between national traffic mortality rates and
crossing speed indicates that in countries with higher rates of traffic
deaths, pedestrians may cross the roads more quickly, potentially
due to a greater perception of danger or urgency to avoid traffic
risks. Although these correlations are modest, they point to un-
derlying contextual factors, such as economic disparity and road
safety, that can subtly influence how pedestrians navigate urban
environments in different national settings.

4.1 Limitations and Future Work
This study has several key limitations that must be considered when
interpreting the results. The primary limitation arises from the
inherent bias and uneven distribution of available dashcam footage
across different countries and territories, with some countries or
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Figure 9: Relation between traffic mortality rate and speed of crossing. Labels show the ISO-3 codes of countries and territories.

territories being heavily represented while others have much less
data, potentially skewing global analyses of pedestrian behaviour.

Another limitation is the focus exclusively on urban environ-
ments, as the analysis is restricted to footage from cities, thereby
excluding suburban and rural settings, where pedestrian behaviour
can differ significantly due to variation in infrastructure and traf-
fic patterns. Additionally, the conversion of pixel-based measure-
ments into real-world distances is based on national average human
heights, which introduces uncertainty due to demographic varia-
tion and camera perspective.

From a technical perspective, our reliance on the YOLOv11x
object detection model, which is trained on the COCO dataset [21],
restricts the analysis to basic object classes and relatively sim-
ple pedestrian behaviours. Many context-specific objects or subtle
cues, such as road boundaries, lane markings, gestures, or posture
changes, are not detected by YOLOv11x due to limitations in the
COCO label set. As illustrated in Figure 10, sample frames of the
slowest and fastest detected crossings highlight several challenges
of the current approach. In the slowest crossing (top left), the re-
duced speed of a pedestrian is due to pushing a cart; in the second
slowest (top right), the person approaches the ego vehicle before
starting to cross, resulting in a longer crossing time. For the fastest
crossings (bottom row), camera rotation or vehicle turning causes
pedestrians to be detected as crossing in front of the vehicle, even if
they are merely walking nearby. Since YOLOv11x cannot explicitly
recognise road boundaries, such scenarios can introduce additional
errors.

Furthermore, object identifiers are reset between daytime and
nighttime segments, disrupting the continuity of pedestrian track-
ing and preventing longitudinal behavioural analysis. The exclusive
use of fixed parameter values, such as the detection confidence
threshold, may also exclude relevant cases or allow false positives.
Future research should systematically investigate the effects of these
parameters and consider advanced techniques - including pose esti-
mation methods such as OpenPifPaf [19] and improved multi-object
trackers like Bot-SORT [1]—to enable richer behavioural annotation
and improve reliability. Incorporating lane detection and additional
contextual understanding may also reduce false positives and en-
able a more accurate interpretation of pedestrian environments.
Finally, expanding the dataset to include suburban and rural footage,
as well as balancing representation across countries and territories,
will be crucial to improving the robustness and generalisability of
future analyses.

The current approach also faces challenges in accurately dis-
tinguishing between pedestrians and other road users. YOLOv11x
sometimes mislabels cyclists and motorcyclists as pedestrians, lead-
ing to false positives that can skew crossing speed data toward
higher values. In some cases, pedestrian IDs are reassigned incor-
rectly, for example, when a pedestrian is temporarily obscured by a
static object. Although the applied filters eliminate most false posi-
tives, the parameter choices do not remove all of them; additional
filtering techniques are needed to better ensure that true crossing
events are retained without inadvertently rejecting valid cases.
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Figure 10: Sample frames illustrating detected pedestrian crossings with YOLOv11x-assigned IDs and confidence values from
four selected videos. The top row shows the two slowest detected crossings. Left: the slowest crossing, with the person marked
as ID 4 moving at 0.5 m/s(YouTube ID: STbVEZMJdC0); right: the second slowest crossing, with the person marked as ID 4 at
0.5 m/s in Brussels, Belgium (YouTube ID: P00zkZ3_yYY). The bottom row shows the two fastest detected crossings. Left: the
fastest crossing, with the person marked as ID 1 at 2.5 m/s in Johannesburg, South Africa (YouTube ID: rnTPlWqduEg); right: the
second fastest crossing, with the person marked as ID 1 at 2.5 m/s in Cebu City, Philippines (YouTube ID: Wc6_DYNNzqQ).

Another limitation is that, for certain countries and territories,
the estimated crossing speed and the crossing initiation time do
not align with previously published results. This suggests that
current detection and tracking algorithms may require further tun-
ing and validation. Moreover, it is important to recognise that the
application of a single set of parameters across all countries and
territories may not yield optimal results, given the substantial diver-
sity in environmental conditions, pedestrian behaviour, and video
characteristics worldwide. In future work, we plan to address this
limitation by employing advanced deep learning models for lane
detection (such as SCNN [28]) and incorporating speed approxi-
mation techniques. These approaches can improve the contextual
understanding of pedestrian environments and provide more accu-
rate speed estimates by leveraging detected lane boundaries and
perspective signals. Future work should therefore explore adaptive
or region-specific parameter settings and algorithmic adjustments
to more accurately capture local variations and ensure more reliable
cross-national comparisons.

Broader research directions should include expanding the dataset
for better balance between countries and territories and incorpo-
rating data from suburban and rural environments. Integrating

additional contextual factors, such as weather, time of year, inter-
section design, and local traffic policies, could provide a more robust
and comprehensive model of pedestrian behaviour. Advanced com-
puter vision methods that enable detailed recognition of pedestrian
attributes (e.g., intention, gait, and accessories) would further enrich
the analysis.

Future work should incorporate an analysis of non-standard
behaviour such as jaywalking [45, 50], cyclist dynamics [8, 14], and
interactions between other vulnerable road users [23]. Investigating
how these behaviours vary with cultural norms, traffic regulations,
and infrastructure quality across different regions could provide
valuable information for urban planning and public safety initia-
tives [25]. Then, future studies must address the critical need to
develop effective external human-machine interfaces (eHMIs) for
AVs and interactive interfaces for modern cars [5, 6]. Such inter-
faces should consider global variations in pedestrian behaviour
to effectively communicate the intentions of an AV to pedestri-
ans. Given that pedestrian responses and expectations can vary
greatly in cultural contexts, designing universally comprehensible
or culturally adaptive user interfaces could significantly improve
pedestrian safety and the acceptance of AV technology worldwide.
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5 Dataset and Code Availability
A maintained version of the code and additional figures of analysis
are available at https://github.com/bazilinskyy/youtube-national.
The dataset is available at https://doi.org/10.4121/fe366b3a-5053-
4b90-9f78-cc6d3056aaa2.
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Figure A1: Mean pedestrian crossing speed by country or territory, shown separately for daytime (red) and nighttime (blue)
observations. 47 countries and territories with at least 10 hours of footage and at least 500 valid pedestrian crossing detections
(either daytime or nighttime) are considered. The mean and standard deviation (SD) of the overall crossing speed are displayed
next to the country name, followed by the daytime (D) and nighttime (N) values (mean ± SD) in parentheses. Bars are sorted in
ascending order based on the daytime mean speed for each country; if daytime data are unavailable, nighttime values are used
to order.
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Figure A2: Mean pedestrian crossing initiation time, presented by country or territory, with daytime (red) and nighttime (blue)
observations. 47 countries and territories with at least 10 hours of footage and at least 500 valid pedestrian crossing detections
(either daytime or nighttime) are considered. The mean and standard deviation (SD) of the overall crossing initiation time are
displayed next to the country name, followed by the daytime (D) and nighttime (N) values (mean ± SD) in parentheses. Bars are
sorted in ascending order based on the daytime mean speed for each country; if daytime data are unavailable, nighttime values
are used to order.
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Figure A3: Histograms of pedestrian crossing speed (top) and crossing initiation time (bottom). Data are shown after applying
population and video duration thresholds, filtering out irrelevant movements, riders (bicycle/motorcycle), and applying
minimum and maximum limits for speed (0.5–2.5m/s) and crossing initiation time (1–150 s). 124 countries are considered with
109,245 crossings in total. Each value in the histograms represents an individual pedestrian crossing detected in the dataset,
regardless of which country or territory it occurred in. The displayed mean and median are calculated across all individual
crossings, not as averages per country.
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