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Abstract

Day-night appearance shift degrades vision for driving and surveillance. Low illumination, mixed
lighting, glare, and sensor noise weaken cues for detection, segmentation, localisation, and track-
ing. We survey illumination domain translation for images and video, focusing on day to night and
night to day mapping that changes illumination while preserving geometry, semantics, and tem-
poral coherence. We relate illumination modelling and colour transfer to learning based methods,
and introduce a constraint centric taxonomy linking supervision, five domain gap factors, and five
families of constraints and priors to typical failure modes. Using this taxonomy, we organise 30 rep-
resentative methods and summarise 22 datasets. We also report an artefact availability audit of 34
published methods: 29 release code, 22 provide pretrained weights, 21 specify licences, and 19 provide
reproducibility packages. Finally, we recommend evaluation spanning perceptual quality, semantic
preservation, downstream utility, and temporal stability.

Keywords: Image-to-Image Translation, Domain Adaptation, Semantic Preservation, Outdoor Vision,
Reproducibility

1 Introduction

Computer vision underpins a wide range of
deployed systems, including automated driv-
ing, surveillance, and large scale recognition
pipelines (Du, Shi, Zeng, Zhang, & Mei, 2022;
L. Liu et al., 2020; Ma, Ouyang, Simonelli, &
Ricci, 2024). However, in practice, performance
degrades sharply under adverse imaging condi-
tions. At night, poor illumination, short exposure,
low contrast, and sensor noise suppress or distort
the visual evidence that modern perception mod-
els rely on, including object boundaries, textures,

road markings, and small or distant targets, lead-
ing to substantial accuracy drops during real world
operation (C. Li et al., 2021; J. Liu, Xu, Yang,
Fan, & Huang, 2021). A central difficulty is the
domain gap between the conditions represented
in standard training and evaluation data and
those encountered in low illumination deployment,
where appearance statistics, signal to noise char-
acteristics, and visibility of semantic cues differ
markedly from daytime imagery. This gap persists
and is often amplified because widely used corpora
and benchmarks are dominated by well lit images,
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whereas dedicated nighttime datasets remain com-
paratively small and difficult to collect, and their
dense annotations are considerably more expen-
sive, which limits coverage and encourages models
to overfit to daytime appearance (Cordts et al.,
2016; J. Liu et al., 2021; Neumann et al., 2018; Yu
et al., 2020).

An approach to mitigating this gap is Illumina-
tion Domain Translation (IDT). We review recent
methods for outdoor imagery and discuss how
constraint design and evaluation practice affect
practical utility. The scope and terminology used
in this survey are defined in subsection 3.1. Pre-
vious work shows that IDT can attenuate adverse
effects such as low brightness, reduced contrast,
and sensor noise by producing translated imagery
that better aligns with the conditions seen dur-
ing training (Pang, Lin, Qin, & Chen, 2021).
In the specific context of night to day (N2D)
and day to night (D2N) translation, paired and
unpaired learning frameworks (Isola, Zhu, Zhou,
& Efros, 2017; Zhu, Park, Isola, & Efros, 2017)
illustrate how cross domain mappings can reduce
the mismatch between training data and deploy-
ment conditions. From a data perspective, the
difficulty of capturing and annotating low light
images at scale (J. Liu et al., 2021) motivates the
widespread use of weakly supervised and unpaired
approaches, as well as outdoor specific translation
systems (E. Lee & Kang, 2021), which avoid the
need for perfectly aligned day and night image
pairs.

Despite these advantages, N2D translation
remains challenging, as the mapping from night
time to daytime appearance is not uniquely deter-
mined by the input. Low illumination and short
exposure amplify sensor noise and reduce con-
trast, erasing boundaries and small objects that
are critical to outdoor perception (J. Liu et al.,
2021). Localised light sources introduce strong
spatial illumination discontinuities (Jobson, Rah-
man, & Woodell, 1997), while mixed artificial
spectra violate standard colour constancy assump-
tions (Gehler, Rother, Blake, Minka, & Sharp,
2008). As a result, multiple daytime interpre-
tations may be compatible with a single night
time observation, necessitating strong priors, as
already recognised in classical illumination and
reflectance formulations (Land & McCann, 1971).
From a probabilistic perspective, this ambigu-
ity manifests itself as perceptual uncertainty and

multimodality (Blau & Michaeli, 2018; T. Wang
et al., 2022), explaining why translated outputs
may appear visually plausible but remain semanti-
cally incorrect. These issues motivate our problem
formulation, since perceptual improvements do
not reliably translate into downstream perfor-
mance gains (R. Zhang, Isola, Efros, Shechtman,
& Wang, 2018), and in the video setting explicit
temporal coherence constraints are required to
prevent flicker and inconsistent structure between
frames (T.-C. Wang, Liu, Zhu, Liu, et al., 2018).

Building on the trade off between percep-
tual quality and fidelity highlighted by Blau
and Michaeli (2018), and related observations by
R. Zhang et al. (2018), this review addresses a key
gap in the N2D translation literature: while many
methods report improved visual appearance, it is
often unclear which design choices reliably pre-
serve scene content and structure under extreme
changes in illumination, and how such choices
should be evaluated for practical use. Accordingly,
we organise prior work around constraints and
priors intended to preserve semantics, geometry,
and, for video, temporal coherence, rather than
optimising visual realism alone. To motivate this
organisation, we relate classic principles, includ-
ing illumination and reflectance separation (Land
& McCann, 1971) and colour transfer formula-
tions (Reinhard, Adhikhmin, Gooch, & Shirley,
2002), to modern generative objectives that oper-
ationalise these ideas as explicit constraints.

We cover physics motivated and decomposi-
tion based formulations, such as illumination and
atmospheric simulation (Lengyel, Garg, Milford,
& van Gemert, 2021) and disentanglement ori-
entated translation (Lan, Zhao, & Li, 2023), as
well as supervised methods (Lakmal, Dissanayake,
& Aramvith, 2024), unpaired methods (E. Lee
& Kang, 2021), semantic aware objectives for
structure preservation (Schutera, Hussein, Abhau,
Mikut, & Reischl, 2020), multimodal and fusion
orientated strategies (Yang, Sun, Lou, Yang, &
Zhou, 2023), and temporal formulations for video
(T.-C. Wang, Liu, Zhu, Liu, et al., 2018). Guided
by the evaluation concerns raised by Blau and
Michaeli (2018) and R. Zhang et al. (2018), we
also systematise datasets and protocols that assess
perceptual quality alongside preservation and task
utility, and we complement the methodological
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review with an artefact availability audit span-
ning code, model weights, training configurations,
evaluation scripts, and licence terms.

Unlike previous reviews that focus primarily
on low light enhancement (Guo, Ma, Garćıa-
Fernández, Zhang, & Liang, 2023), image colouri-
sation (Anwar et al., 2025; S. Huang, Jin, Jiang,
& Liu, 2022), or generic image to image trans-
lation (Hoyez, Schockaert, Rambach, Mirbach, &
Stricker, 2022; Saxena & Teli, 2021), this arti-
cle treats IDT as a distinct problem for outdoor
vision (Anoosheh, Sattler, Timofte, Pollefeys, &
Van Gool, 2019; Dai & Gool, 2018; Sakaridis, Dai,
& Gool, 2019). In this setting, translation errors
can alter semantics in ways that are not captured
by perceptual metrics alone (Cherian & Sullivan,
2019), mapping is often multimodal (X. Huang,
Liu, Belongie, & Kautz, 2018), and video intro-
duces temporal instability that can undermine
downstream pipelines (T.-C. Wang, Liu, Zhu, Liu,
et al., 2018). We therefore analyse failure modes
that can be missed by perceptual metrics and
organise methods according to the constraints
used to control these failures. Finally, we fore-
ground reproducibility and deployability through
a structured artefact availability audit, a focus
that is often underemphasised in previous reviews
(Guo et al., 2023; Pitié, 2020) and aligns with
recent calls for greater openness and transparency
in automotive user research (Ebel et al., 2024).

To differentiate this survey from previous
work, we make four contributions. First, we
introduce a constraint centric taxonomy that
links supervision, sources of domain gap, fami-
lies of constraints and priors, and recurring failure
modes. Second, we provide structured coverage
of 30 methods and 22 datasets, and we state
explicit inclusion criteria to make the scope clear
and reproducible. Third, we propose a four part
evaluation protocol based on evidence of percep-
tual quality, structural fidelity, downstream task
impact, and temporal stability, abbreviated as P,
S, D, and T, and we highlight common report-
ing pitfalls, for example using PSNR or SSIM
without ensuring geometric alignment. Fourth, we
report an artefact availability audit that records
what was checked, the audit snapshot date, and a
precise definition of availability.

1.1 Problem formulation and
implications

Let Xn and Xd denote the distributions of RGB
images at night and daytime, respectively. The
N2D and D2N translations seek a mapping

G : Xn → Xd (1)

(or its inverse) such that the translated out-
put matches the target domain while remaining
faithful to the input scene.

Organising lens (scope control). We use the
following decomposition as a unifying view of
the literature: many learning-based methods can
be interpreted as combining a domain-alignment
term with a subset of constraint/prior terms that
mitigate specific failure modes. This is not a claim
that all approaches optimise an identical objec-
tive, nor that any objective guarantees semantic
faithfulness under severe ambiguity.

Most learning-based approaches can be inter-
preted as combining a domain-alignment term
which encourages outputs to match the target illu-
mination domain with additional constraint/prior
terms that mitigate specific failure modes (e.g.
semantic drift, hallucinated structure, and, for
video, temporal instability):

L = λadvLadv + λcycLcyc + λidLid

+ λsemLsem + λphyLphy + λtempLtemp

(2)

Here Ladv provides distributional alignment,
typically via an adversarial objective (Isola et
al., 2017); Lcyc enforces the consistency of the
cycle or reconstruction (Zhu, Park, et al., 2017);
Lid promotes the preservation of identity (Zhu,
Park, et al., 2017); Lsem encodes semantic or
task-consistency constraints through labels or
task networks (Hoffman et al., 2018); Lphy cap-
tures physics-informed priors (e.g. illumination
and image-formation structure) (Land &McCann,
1971; Lengyel et al., 2021); and Ltemp enforces
temporal coherence for video translation (T.-
C. Wang, Liu, Zhu, Liu, et al., 2018). Nonneg-
ative coefficients λadv, λcyc, λid, λsem, λphy, λtemp

are method-specific weights that place a rel-
ative emphasis on alignment versus constraint
terms (Isola et al., 2017; T.-C. Wang, Liu, Zhu,
Liu, et al., 2018; Zhu, Park, et al., 2017). As
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an organising lens, this formulation provides a
compact index into the method space: individual
approaches can be understood as instantiating dif-
ferent subsets (and variants) of these terms, lead-
ing to different trade-offs between visual plausibil-
ity, structural preservation, semantic faithfulness,
and temporal stability.

1.1.1 Alignment term in paired and
unpaired settings

The alignment component depends on the avail-
able supervision. When paired (or pseudo-paired)
samples (xn, xd) are available, alignment is typi-
cally enforced by direct reconstruction (optionally
complemented by perceptual terms):

Lpaired
align = E(xn,xd)

[
ℓrec

(
G(xn), xd

)
+ α ℓperc

(
G(xn), xd

)] (3)

where, ℓrec is commonly an ℓ1 or ℓ2 loss and
ℓperc is a learnt perceptual distance. Adversarial
terms can be added to improve realism in the
target domain (Isola et al., 2017).

When supervision is unpaired, alignment is
typically distributional rather than pixel-wise:

Lunpaired
align = Ladv

(
G;Xn → Xd

)(
+ Ladv

(
F ;Xd → Xn

)) (4)

where, Ladv denotes the adversarial align-
ment between translated outputs and the target-
domain distribution (Isola et al., 2017). In this
regime, additional constraints such as cycle/iden-
tity, semantic/task, physics-based, and temporal
terms provide the primary mechanism for pre-
serving scene structure under severe illumination
shift.

A defining characteristic of IDT is that the
mapping is often underdetermined in low light,
where noise, saturation, and occlusions remove
or corrupt the evidence of the scene (J. Liu
et al., 2021). Consequently, for a night obser-
vation xn ∈ Xn, the conditional distribution
p(xd | xn) is frequently multimodal. Importantly,
this implies there may be multiple daytime (or
nighttime) renderings that are consistent with

the same observation, so “correctness” is better
viewed as satisfying faithfulness constraints than
matching a unique ground-truth output. Deter-
ministic models therefore typically return a single
plausible solution within this space (X. Huang
et al., 2018; H.-Y. Lee, Tseng, Huang, Singh,
& Yang, 2018; Zhu, Zhang, et al., 2017). This
can yield outputs that appear visually convinc-
ing while deviating from the underlying scene
semantics, consistent with the perception distor-
tion trade-off (Blau & Michaeli, 2018). The risk
is amplified by assumptions that are routinely
violated at night, including smooth illumination
in the presence of localised light sources (Jobson
et al., 1997), reduced signal-to-noise ratios under
short exposure (C. Li et al., 2021), limited visibil-
ity of small or distant semantic cues (Neumann et
al., 2018), and Lambertian reflectance and colour
constancy under mixed artificial spectra (Gehler
et al., 2008). In safety-critical settings, these con-
siderations favour conservative transformations
that preserve structure and object integrity over
aggressive appearance normalisation.

These observations motivate the central organ-
ising principle of this survey. Progress in N2D and
D2N translation is best understood through the
constraints and priors used to control semantic
drift, hallucinated structure, and temporal insta-
bility, and through evaluation protocols that test
these failure modes directly.

2 Foundations before deep
generative models

Before deep learning based image translation,
approaches that addressed day and night appear-
ance variation were dominated by classical illumi-
nation modelling and colour processing, including
Retinex style lightness and colour constancy for-
mulations, multiscale illumination correction, and
statistical colour transfer (Jobson et al., 1997;
Land & McCann, 1971; Reinhard et al., 2002).
The common objective was to reduce sensitiv-
ity to illumination by correcting low brightness,
stabilising colour, or normalising lighting so that
the scene more closely resembles a well lit obser-
vation, with related extensions to video through
time dependent illumination normalisation (Mat-
sushita, Nishino, Ikeuchi, & Sakauchi, 2004; Toet
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& Hogervorst, 2012). Retinex inspired illumina-
tion correction and intrinsic image style decom-
positions are central in this line of work, and
they provide useful context for understanding how
modern translation methods impose constraints to
preserve scene content under extreme illumination
change.

2.1 Illumination and colour
normalisation

Early work on coping with day and night appear-
ance variation focused on normalising image for-
mation effects rather than learning cross domain
mappings. A common first line of attack was
the manipulation of contrast and dynamic range,
including local histogram based methods such as
contrast limited adaptive histogram equalisation
and related local contrast operators (Zuiderveld,
1994). Closely related work in tone mapping for
high dynamic range imagery decomposed images
into large scale illumination and fine detail com-
ponents using edge preserving filtering, then com-
pressed the illumination component while retain-
ing detail (Durand & Dorsey, 2002). Although
these operators do not explicitly model D2N trans-
lation, they shaped many later enhancement and
normalisation baselines by formalising practical
ways to boost visibility while limiting halos and
contrast artefacts.

A second classical line addressed colour con-
stancy by estimating the scene illuminant and
correcting chromatic shifts so that object colours
remain stable across lighting changes. The Grey
World hypothesis introduced by Buchsbaum
(1980) estimates illumination from global statis-
tics, while Forsyth (1990) formulated a princi-
pled approach to constraining illuminant esti-
mates using feasible colour gamuts. Later vari-
ants improved robustness by relaxing the strict
Grey World assumption through intermediate
norms (Finlayson & Trezzi, 2004) and by using
derivative statistics rather than raw intensities, as
in the Grey Edge family (Van De Weijer, Gev-
ers, & Gijsenij, 2007). These methods provide
interpretable mechanisms for separating lighting
effects from scene appearance, and they motivated
distribution alignment style reasoning that later
appeared in learning based translation objectives.

A third family used reflectance illumination
decomposition ideas to construct illumination

stable representations. Intrinsic image formula-
tions explicitly describe an observed image as
reflectance modulated by illumination and seek
to recover components that are more invariant
to changes in light (Barrow, Tenenbaum, Hanson,
& Riseman, 1978). In recognition orientated set-
tings, quotient based normalisation was explored
as a practical approximation to removing light-
ing effects, for example through the Self Quo-
tient Image representation for illumination robust
matching (H. Wang, Li, Wang, & Zhang, 2004).
For video, illumination can also be treated as
a time varying signal; Matsushita et al. model
illumination in a low dimensional subspace to
compensate lighting fluctuations and cast shad-
ows in fixed camera sequences (Matsushita et al.,
2004).

Retinex theory integrates these perspectives
by computing lightness from relative luminance
ratios rather than absolute intensities, supporting
colour constancy and reduced dependence on the
illumination field (Land & McCann, 1971). The
practical Retinex variants then introduced explicit
engineering choices to improve stability in real
imagery. Multiscale Retinex with Colour Restora-
tion applies centre surround operations at multiple
spatial scales and adds a colour restoration stage
to counteract desaturation, delivering improved
dynamic range compression while retaining chro-
matic information (Jobson et al., 1997). Subse-
quent work reformulated Retinex with explicit
optimisation, for example through a variational
framework and reduced complexity solvers (Elad,
Kimmel, Shaked, & Keshet, 2003; Kimmel, Elad,
Shaked, Keshet, & Sobel, 2003), and edge preserv-
ing filtering was used to improve handling of illu-
mination boundaries and suppress noise in dark
regions (Elad, 2005). More recent fast Retinex
style baselines estimate illumination using simple
statistics in HSV space and recover an approx-
imate reflectance at low computational cost, for
example RBFA (S. Liu, Long, He, Li, & Ding,
2021).

Taken together, these classical strands estab-
lish the key ingredients that modern day and night
translation systems must control: visibility and
dynamic range, chromatic stability under mixed
illumination, and separation of scene structure
from illumination effects, with additional stability
requirements when processing video.
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2.2 Limitations and connection to
modern translation

Classical illumination and colour normalisation
methods provide valuable physical insight, but
they typically rely on assumptions that are fre-
quently violated in real outdoor night scenes.
These assumptions include spatially smooth illu-
mination, limited dynamic range, and stable
colour constancy (Buchsbaum, 1980; Durand &
Dorsey, 2002; Forsyth, 1990; Jobson et al., 1997;
Land & McCann, 1971). Localised light sources,
saturated highlights, mixed lighting spectra, and
sensor noise can therefore lead to unstable correc-
tions and limited recovery of semantically mean-
ingful detail in severely exposed regions (S. Liu
et al., 2021; Neumann et al., 2018; Sakaridis
et al., 2019). In addition, classical pipelines are
largely agnostic to semantic structure, which lim-
its their suitability for safety critical applications
where object identity and layout must be pre-
served (Bhattacharjee, Kim, Vizier, & Salzmann,
2020; Schutera et al., 2020). For video, classi-
cal normalisation can reduce global illumination
variation, but it generally does not enforce sta-
ble content translation between frames in complex
motion and mixed lighting (Matsushita et al.,
2004).

A useful link to modern methods is provided
by a simplified view of image formation.

I(x) = R(x) · L(x) (5)

where, I(x) is the observed image, R(x)
denotes reflectance that encodes the structure of
the illumination invariant scene, and L(x) denotes
the illumination field. Retinex and intrinsic image
formulations seek to estimate or normalise R(x)
by imposing hand crafted priors on L(x), but
intrinsic decomposition is severely under con-
strained without strong assumptions (Barron &
Malik, 2012; Barrow et al., 1978). Learning based
translation can be interpreted as replacing such
hand crafted priors with data driven constraints
that regularise the mapping while preserving con-
tent.

This continuity is visible in multiple design
patterns. Retinex motivated separation of illu-
mination and reflectance reappears in learning
based methods that disentangle content from illu-
mination or style through explicit decomposition
and representation constraints (Lan et al., 2023).

Classical distribution alignment ideas also persist.
Statistical colour transfer aligns channel wise dis-
tributions across images (Reinhard et al., 2002),
and related illumination normalisation and colour
constancy approaches estimate global or local cor-
rections from image statistics (Buchsbaum, 1980;
Finlayson & Trezzi, 2004; Van De Weijer et al.,
2007). These ideas anticipate distribution match-
ing objectives used in unpaired translation frame-
works such as CycleGAN (Zhu, Park, et al., 2017).
More broadly, modern day and night transla-
tion extends classical principles with explicit con-
straints that target semantics and stability, includ-
ing semantic consistency and temporal coherence,
addressing failure modes that classical methods
cannot reliably control under severe illumination
change (Isola et al., 2017; Schutera et al., 2020;
T.-C. Wang, Liu, Zhu, Liu, et al., 2018).

In summary, classic illumination and colour
normalisation methods explain important aspects
of the day and night appearance gap, but
their limitations under extreme degradation moti-
vate learning based translation with constraints
designed to preserve scene structure, object
integrity, and temporal stability.

3 Scope, terminology and
survey protocol

3.1 Scope and terminology

We survey methods whose primary objective is
IDT, for outdoor scenes in RGB images and RGB
video. IDT encompasses D2N and N2D transla-
tion and is motivated by downstream outdoor
vision tasks including detection, segmentation,
localisation, and tracking.

In this survey, translation means mapping an
input from one illumination domain to another
while preserving scene geometry and scene seman-
tics. For video, translation also requires tempo-
ral coherence, meaning that static scene content
should remain stable across frames. A representa-
tive example is translating night driving imagery
into a daytime appearance so that a perception
pipeline developed for daytime data fails less often
under illumination shift.

We distinguish translation from enhance-
ment and from domain adaptation. Enhance-
ment improves visibility or perceptual quality
within the same illumination domain, for example,

6



brightening, denoising, or contrast correction of
night images, and it does not target a distinct day-
time domain. Domain adaptation aims to improve
the robustness of a task model across domains,
for example, by feature alignment, self training
methods, or related representation learning objec-
tives, and it does not require an explicit translated
image or video as the final output.

To keep the scope precise, we treat enhance-
ment and domain adaptation as context unless
they are directly used to support IDT or to contex-
tualise evaluation practice, and we do not include
them in the main method set. We also apply
explicit exclusions. We exclude cross modality
translation, such as thermal to visible or infrared
to visible, and related sensor translation settings.
We exclude generic image to image translation
methods that appear only as baselines and are
not designed for illumination shift. We exclude
pure enhancement methods whose objective is to
improve night imagery without targeting the day
as a distinct domain. We exclude domain adapta-
tion methods that do not include explicit image
or video translation or that do not evaluate the
translation output.

3.2 Literature review and inclusion
criteria

To define the set of works reviewed beyond
the introduction, we followed a two stage liter-
ature collection strategy that combined keyword
based retrieval with citation snowballing. We used
Google Scholar for discovery and queried com-
binations of D2N and N2D translation terms
with modelling phrases, including day to night
image conversion, night to day image conversion,
image conversion, day to night image conversion
using CNN, image to image translation, illumi-
nation translation, time of day translation, GAN
based translation, and CNN based conversion. The
queries were iteratively refined by inspecting the
results and adding synonym terms encountered
in relevant papers. To reduce the risk of miss-
ing influential or less easily discoverable work,
we then applied backward and forward citation
snowballing on the resulting seed set by screen-
ing reference lists and papers that cite the seed
papers. We repeated this process until additional
iterations yielded few or no new relevant papers.

The main taxonomy and comparative analysis
are based on papers that address the translation
of D2N or N2D for outdoor scenes and provide
sufficient methodological or empirical detail for
comparison. We include a paper in this main set
when it satisfies at least two conditions. The paper
states an explicit objective for the D2N or N2D
translation. The paper is motivated by outdoor
driving or surveillance settings, or it uses datasets
and evaluation protocols drawn from those set-
tings. The method design is tailored to illumina-
tion shift, for example through physics motivated
priors, semantic constraints, degradation disen-
tanglement, or temporal coherence mechanisms.
The paper reports on empirical evaluation of day
and night datasets or assesses impact on down-
stream outdoor vision tasks. Generic image to
image translation methods that are referenced
only as baselines are not counted as part of the
main set.

Applying this search and screening procedure
yields a main set of 30 IDT methods for detailed
analysis, where the count is an outcome of the pro-
cess rather than an additional selection stage. We
treat a method as a distinct entry when it intro-
duces a materially different modelling assumption,
constraint, or training signal that maps to our
taxonomy, and we discuss closely related vari-
ants together to avoid counting minor revisions
multiple times. For datasets, we report 22 public
benchmarks for outdoor RGB imagery and video
that are used in the included IDT papers as evalu-
ation reference points. Although the procedure is
systematic, omissions remain possible due to the
breadth of related work, differences in terminol-
ogy between communities, and new releases that
appear after the search snapshot.

3.3 Artefact audit protocol

We also conduct an artefact availability audit for
representative methods covered in this survey, and
we define the audit protocol in subsection 8.1.

4 A constraint-centric
taxonomy for IDT

IDT between day and night exhibits a severe
appearance gap. Illumination changes are spa-
tially non-uniform, local light sources introduce
saturation and glare, sensor noise increases, and
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task-relevant cues can become weak or partially
invisible. Under these conditions, objectives based
primarily on distribution matching can fail by
distorting structure, removing objects, or gen-
erating visually plausible outputs that violate
scene semantics or scene geometry. These risks
are particularly consequential in outdoor applica-
tions, such as automated driving and surveillance,
where hallucinated content or missing objects can
mislead downstream perception systems.

To make the literature easier to interpret,
we organise methods using a constraint-centric
taxonomy. Rather than grouping papers only by
architecture, we group them by the explicit con-
straints and priors introduced to keep IDT faithful
under extreme illumination shift. This perspective
clarifies (i) which failure modes a method targets
(e.g. semantic drift, hallucinated structure, tem-
poral instability) and (ii) which evaluations are
needed to substantiate claimed robustness.

4.1 Taxonomy dimensions

We describe methods along three complementary
dimensions: the supervision available during train-
ing, the data modality at inference time, and the
constraint families used to regularise the mapping
under extreme illumination shift.

4.1.1 Supervision regime

The methods differ in the supervision used to
learn the IDT mappings. Paired supervision pro-
vides pixel-level guidance when reliable align-
ment exists and can improve the preservation
of fine structures (Isola et al., 2017; Punnap-
purath, Abuolaim, Abdelhamed, Levinshtein, &
Brown, 2022). However, in outdoor settings, true
day–night alignment is difficult due to dynamic
objects, exposure variation, and viewpoint drift,
and pseudo-pairs can introduce systematic bias.
Unpaired supervision is therefore common because
it is easier to scale, using adversarial objectives
and consistency constraints to align domains with-
out correspondence (M.-Y. Liu, Breuel, & Kautz,
2017; Yi, Zhang, Tan, & Gong, 2017; Zhu, Park,
et al., 2017). Since distribution-level alignment
does not guarantee semantic correctness under
severe illumination changes, many works incor-
porate weak or auxiliary supervision—such as
semantic labels, geometric cues, pseudo-pairs, or

teacher networks—to anchor translation to mean-
ingful structure (Bang et al., 2024; Bhattacharjee
et al., 2020).

4.1.2 Data modality

Most early work focusses on still images, where
each input is processed independently. In out-
door deployment, however, video IDT is often
required, and temporal coherence becomes a first-
order requirement: the translation must preserve
scene semantics and geometry not only within
each frame but also consistently across time.
Video methods therefore introduce explicit tem-
poral objectives, recurrent components, temporal
discriminators, or motion-guided constraints (e.g.
optical-flow-based consistency) to reduce flicker
and identity drift across frames (Chen, Pan, Yao,
Tian, & Mei, 2019; T.-C. Wang, Liu, Zhu, Liu,
et al., 2018). This distinction matters because
frame-wise translators can appear plausible on a
per-frame basis while failing under temporal eval-
uation, with direct consequences for downstream
tasks such as tracking and localisation.

4.1.3 Constraint and prior families

Across supervision regimes and data modalities,
the main differentiator is the set of constraints
and priors used to regularise IDT under severe
ambiguity and partial observability.

• Cycle and identity constraints promote
content preservation by encouraging invertibil-
ity between domains and discouraging unneces-
sary appearance changes; they form the back-
bone of many unpaired approaches (Zhu, Park,
et al., 2017).

• Semantic and instance constraints preserve
object identity and scene layout by coupling
translation to task signals (e.g. segmentation or
detection) or by enforcing consistency through
pretrained task networks (Bhattacharjee et al.,
2020; Shiotsuka et al., 2022).

• Physics-informed priors encode illumina-
tion and degradation structure explicitly—e.g.
via decomposition, image formation models, or
invariants—reducing reliance on purely statisti-
cal alignment (Y.-J. Lee, Go, Lee, Son, & Lee,
2025).

• Contrastive and correspondence con-
straints enforce local consistency through
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patch, feature, or correspondence-level match-
ing between related regions, which can improve
structural preservation and mitigate collapse in
ambiguous areas (Lan et al., 2023; Park, Efros,
Zhang, & Zhu, 2020).

• Temporal constraints enforce frame-to-frame
coherence in video IDT, mitigating flicker,
colour instability, and identity drift that
degrade tracking and localisation (T.-C. Wang,
Liu, Zhu, Liu, et al., 2018).

Table 2 provides a crosswalk from methods
to constraints for IDT. Each row corresponds to
a representative method. The Sup. column indi-
cates the supervision regime, and the Gap column
lists the primary domain gap factors addressed
using codes I (illumination), G (glare), N (noise),
W (weather), and M (motion or video). The
constraint and prior columns indicate which con-
straint families are central to the method, using
ticks to mark Cycle or Identity, Semantic or
Instance, Correspondence, Physics, and Tempo-
ral constraints. The final columns summarise the
most defensible evaluation evidence emphasised
in the original work, using P (perceptual and
distributional), S (semantic and structural), D
(downstream task utility) and T (temporal stabil-
ity).

4.2 Failure modes and constraint
selection

IDT between day and night exhibits failure
modes—including semantic distortions and tem-
poral flicker—that are not reliably reflected
by perceptual quality measures alone (Blau &
Michaeli, 2018; Z. Jia et al., 2021). Characterising
these failures is therefore useful both for select-
ing constraints and priors and for interpreting
reported results.

Unpaired translators can satisfy cycle con-
sistency while still altering object identity or
scene geometry in severely under-illuminated
regions, a behaviour commonly described as
semantic drift (Bhattacharjee et al., 2020; Shiot-
suka et al., 2022). In regions with limited evi-
dence—particularly in N2D translation, transla-
tion—generative models can introduce a visually
plausible but incorrect structure, reflecting ambi-
guity in conditional mapping and objectives that
prioritise perceptual plausibility (Blau &Michaeli,

2018). Global normalisation and global losses can
also suppress weak signals from small or distant
objects, motivating patch- or correspondence-level
constraints that preserve local structure (Lan et
al., 2023; Park et al., 2020). In the video set-
ting, independent per-frame translation frequently
produces flicker and identity drift over time,
motivating explicit temporal regularisation when
translation is applied to streams (Chen et al.,
2019; T.-C. Wang, Liu, Zhu, Liu, et al., 2018).

In practice, no single constraint is sufficient
in all night conditions. Effective systems balance
(i) content preservation, (ii) semantic anchor-
ing, (iii) robustness to illumination degradation,
and—when operating in video, (iv) temporal sta-
bility.

4.3 Checklist for assessing new
methods

When assessing a D2N translation approach, it is
useful to ask four questions. Which failure mode
is targeted, which constraint family addresses it,
what evidence is provided beyond visual examples,
and whether the method is reproducible in the
sense that training and evaluation details are suf-
ficiently available to support verification and fair
comparison.

5 Learning based translation
methods

This section reviews learning-based approaches for
IDT of outdoor RGB images and videos, encom-
passing N2D and D2N translation. We organise
the literature primarily by the supervision regime
and then by the constraints used to preserve scene
semantics, scene geometry, and—when operating
on video—temporal coherence under severe illumi-
nation change. Throughout, we emphasise design
choices that are particularly relevant to driving
and surveillance, including semantic and instance
preservation, robustness to multi-modal night illu-
mination, task-driven objectives, physics-informed
priors, and temporal consistency.

9



5.1 Paired translation with
supervised conditional models

Paired translation learns a direct mapping G
between illumination domains using aligned train-
ing pairs (e.g. N2D pairs). Conditional generative
adversarial networks provide a canonical formu-
lation in this setting. Pix2Pix uses a conditional
adversarial objective together with an ℓ1 recon-
struction term to encourage realism while preserv-
ing pixel-level fidelity (Isola et al., 2017). When
alignment is reliable, supervised training provides
strong guidance and can preserve fine structures
more consistently than unpaired alternatives.

In practice, the main limitation is data acqui-
sition. Collecting truly aligned day - night pairs
in unconstrained outdoor environments is diffi-
cult because dynamic objects, exposure variation,
weather, and small viewpoint drift break pixel cor-
respondence. As a result, supervised pipelines fre-
quently rely on pseudo-pairs or approximate align-
ment, for example, by synthesising one domain
from the other and then training a supervised
model on the resulting pairs (Punnappurath et
al., 2022). These strategies can improve scalabil-
ity, but they introduce a risk of bias inheritance,
where artefacts or colour statistics introduced dur-
ing pseudo-pair generation are learnt and some-
times amplified by the supervised translator.

5.2 Unpaired translation with
adversarial alignment and
consistency

Unpaired translation learns mappings between
collections of day- and night images without
explicit correspondence. CycleGAN couples two
generators through adversarial alignment and a
cycle-consistency objective that encourages trans-
lated images to map back to their inputs, and
often includes an identity term to discourage
undesirable colour shifts (Zhu, Park, et al., 2017).
Closely related formulations include dual learning
approaches (Yi et al., 2017) and shared-latent-
space models such as UNIT, which combine vari-
ational encoding with adversarial learning under
the assumption that corresponding images share
a common representation (M.-Y. Liu et al., 2017).
These methods remain widely used as baselines
because they eliminate the need for paired data.

However, for IDT, the distribution-level align-
ment and the cycle consistency are not sufficient
to guarantee semantic or geometric faithfulness.
Mixed artificial lighting, saturated highlights, sen-
sor noise, and deep shadows can allow cycle
constraints to be satisfied while object identity,
boundaries, or even the presence of small but crit-
ical road users changes during translation. This
motivates additional constraints that explicitly
preserve semantics and structure.

5.3 Constraints for semantic and
structural preservation

Outdoor vision applications require stable preser-
vation of roads, lane markings, traffic signs, pedes-
trians, and vehicles. Semantically guided transla-
tion introduces explicit task signals-typically via
segmentation guidance or semantic-consistency
losses-to anchor the mapping to a meaningful
structure (Bang et al., 2024; Shiotsuka et al.,
2022). Instance-aware approaches further empha-
sise object-level integrity. DUNIT integrates an
object detector into the translation pipeline
and enforces instance-level consistency, improving
object preservation, and supporting downstream
detection under domain shift (Bhattacharjee et
al., 2020). In this context, these constraints pri-
marily address semantic drift, where visually plau-
sible translations distort object boundaries or
alter object identity.

A related strategy focusses on local corre-
spondence rather than global distribution match-
ing. Contrastive and correspondence-based con-
straints encourage patch-level consistency and
can reduce structural distortions in ambiguous
regions. Disentanglement-based models pursue a
complementary objective by separating domain-
invariant content from domain-specific illumi-
nation or style, supporting controllability, and
reducing collapse toward an average appear-
ance. For example, DiCo combines disentangle-
ment with contrastive learning and introduces an
explicit prior to improve stability under challeng-
ing surveillance illumination (Lan et al., 2023).
In practice, these approaches are best interpreted
as robustness mechanisms rather than diversity
mechanisms alone, since they are designed to
preserve structural signals that matter for down-
stream outdoor tasks.
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5.4 Task driven translation for
localisation and retrieval

A distinct family of approaches treats IDT as
a means of improving a downstream task rather
than as an end goal. For example, retrieval-based
localisation under D2N variation benefits from
outputs that preserve matchable structure and
stable correspondences, not necessarily photore-
alistic appearance. ToDayGAN adapts unpaired
translation with task-motivated discriminators
and constraints that emphasise useful cues for
retrieval and localisation under large appearance
gaps (Anoosheh et al., 2019). Related work shows
that translation (and, in some pipelines, enhance-
ment used for data generation or pre-processing)
can expose localisation systems to difficult night
conditions, with evaluation centred on retrieval
recall and pose accuracy rather than image sim-
ilarity (Mohwald, Jenicek, & Chum, 2023). For
this family, perceptual metrics can be mislead-
ing; task-specific measures such as match statis-
tics, Recall@K, and pose error are essential for a
meaningful comparison.

5.5 Physics informed and
degradation disentangling
models

Physics-informed approaches treat IDT as more
than generic appearance transfer by explicitly
modelling night-specific degradations such as illu-
mination deficiency, sensor noise, and saturated
highlights. Many methods adopt a decomposi-
tion principle, separating the input into inter-
pretable factors (e.g. illumination and reflectance)
or regions (e.g. glare versus under-exposed areas),
applying factor-specific constraints, and recombin-
ing a daytime-like output while enforcing content
fidelity. Recent work on disentangling illumina-
tion degradation introduces degradation-sensitive
objectives, including contrastive terms, to improve
robustness under extreme night conditions (Lan
et al., 2024). The appeal of this family lies in
its inductive bias: generalisation is supported by
assumptions about image formation and illumi-
nation behaviour rather than relying solely on
distribution matching.

5.6 Temporal constraints (overview)

Many deployment settings require video
illumination-domain translation (IDT), where
frame-wise translation commonly produces
flicker and temporal identity drift. Video meth-
ods therefore introduce temporal constraints
(e.g. motion-compensated consistency, spatio-
temporal objectives, recurrent/3D architectures,
or feature-space coherence) to stabilise outputs
over time.

Because these mechanisms, their failure cases
specific to the night, and the evaluation specific to
the video deserve a focused treatment, we review
them in section 6.

5.7 Architectural refinements and
practical variants

Beyond baseline unpaired formulations, many
works propose architectural refinements to
improve stability and structure preservation
under severe illumination shift. Examples include
multi-scale designs, attention mechanisms, and
structural constraints such as edge or gradient
consistency, as well as models that explic-
itly target discriminative cues under day-night
variation (H. Liu, Cheng, & Ye, 2024; Taufiq
& Rahadianti, 2025; Torbunov et al., 2023).
Although such refinements can improve visual
quality, their impact should be assessed together
with semantic preservation and task utility,
particularly in safety-relevant applications.

6 Video translation and
temporal consistency

Video IDT extends image-based translation from
isolated frames to sequences, where preserving
temporal coherence is as important as preserv-
ing per-frame semantics and geometry. Apply-
ing an image translator independently to each
frame commonly produces flicker in colour and
tone, edge instability, and identity drift for small
objects. These artefacts reduce operator trust and
can materially affect downstream modules such as
tracking, mapping, and motion forecasting.

Most effective pipelines therefore introduce
constraints that explicitly couple adjacent frames
and stabilise appearance over time. A common for-
mulation is flow-guided temporal regularisation,
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where translated outputs or intermediate fea-
tures are warped between consecutive frames and
deviations are penalised, typically with occlusion
handling to avoid over-constraining disoccluded
regions (Lai et al., 2018; Ruder, Dosovitskiy, &
Brox, 2016; T.-C. Wang, Liu, Zhu, Liu, et al.,
2018). Motion-aware designs further incorporate
temporal structure into the learning objective, for
example, through discriminators that operate on
short frame windows so that appearance and tem-
poral dynamics are judged jointly (Chen et al.,
2019; T.-C. Wang, Liu, Zhu, Liu, et al., 2018).
Recurrent generators and three-dimensional archi-
tectures provide an alternative by propagating
information over time to reduce frame variance
and stabilise repeated structures (T.-C. Wang,
Liu, Zhu, Liu, et al., 2018; Wei, Zhu, Feng, &
Su, 2018). More recently, feature-space coherence
has been proposed as a less brittle alternative to
pixel-space constraints under motion blur and illu-
mination variation, enforcing temporal stability in
learnt representations (Yang, Zhou, Liu, & Loy,
2024).

Representative mechanisms can be sum-
marised as follows.

• Optical-flow-guided warping losses that penalise
inconsistencies after motion compensation (Lai
et al., 2018; T.-C. Wang, Liu, Zhu, Liu, et al.,
2018).

• Spatio-temporal discriminators and motion-
aware objectives that encourage realistic short-
term dynamics (Chen et al., 2019; T.-C. Wang,
Liu, Zhu, Liu, et al., 2018).

• Recurrent and three-dimensional designs that
propagate context and reduce frame-to-frame
variance (Wei et al., 2018).

• Feature-space temporal coherence
objectives that stabilise intermediate
representations (Yang et al., 2024).

Nighttime video IDT remains substantially
harder than its daytime counterpart because illu-
mination dynamics after dark violate assumptions
underlying many temporal constraints. Sudden
exposure changes, moving headlights, specular

reflections, and localised light sources under-
mine brightness constancy and smooth tempo-
ral variation, allowing appearance drift to accu-
mulate over longer sequences even when short-
term consistency is satisfactory (T.-C. Wang,
Liu, Zhu, Liu, et al., 2018; Wei et al., 2018).
Flow-guided constraints are particularly fragile at
night because low texture, motion blur, and sen-
sor noise degrade flow reliability, and incorrect
warps may be enforced as if they were ground-
truth correspondences (Lai et al., 2018; Ruder
et al., 2016). Spatio-temporal discriminators can
improve global temporal realism, but they do
not necessarily protect the identity of fine-grained
objects, especially small or distant objects that
contribute weakly to the adversarial signal (Chen
et al., 2019). Feature-space coherence mitigates
some of these issues, but its effectiveness depends
on the robustness of the chosen representations
under severe illumination variation (Yang et al.,
2024).

Long-horizon stability introduces additional
requirements beyond the adjacent-frame coupling.
Many pipelines achieve short-term coherence by
conditioning on neighbouring frames, yet degrade
over longer sequences when objects leave and re-
enter the field of view or when lighting changes
abruptly. Mechanisms for longer-term consistency
have therefore been explored in video synthesis
and translation (Mallya, Wang, Sapra, & Liu,
2020; Rivoir et al., 2021), alongside practical accel-
eration strategies that reduce latency while main-
taining temporal stability (Zhuo, Wang, Li, Wu, &
Liu, 2022). The application context further mod-
ulates the difficulty: moving-camera driving video
introduces parallax, motion blur, and frequent
dynamic objects, while fixed-camera surveillance
reduces viewpoint variation but remains chal-
lenging under mixed illumination events, such as
headlights entering and exiting the scene.

From an evaluation perspective, video IDT
should be assessed using temporal metrics in
addition to per-frame realism. Common choices
include motion-compensated consistency mea-
sures such as warping error (Lai et al., 2018)
and sequence-level stability criteria that quantify
drift over time (Wei et al., 2018). For outdoor
vision, it is also important to report the impact on
downstream tracking and localisation, since visu-
ally smooth outputs may still suppress small but
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safety-critical objects or degrade matchability (T.-
C. Wang, Liu, Zhu, Liu, et al., 2018; Wei et al.,
2018).

7 Datasets and evaluation for
outdoor vision

Datasets and evaluation protocols largely deter-
mine the conclusions drawn in IDT between
day and night. In outdoor vision, the domain
gap is driven not only by illumination, but also
by weather, seasonality, exposure control, sensor
noise, and the motion and viewpoint dynam-
ics of the sensing platform. This section sum-
marises dataset properties that materially affect
training and empirical claims, reviews represen-
tative benchmarks used in the literature, and
proposes an evaluation protocol that links trans-
lation behaviour to downstream outdoor-vision
utility.

7.1 Datasets

Outdoor D2N datasets differ in ways that strongly
influence both what a model can learn and what
the evaluation results mean. Moving-platform
data, typical in driving, introduce parallax,
motion blur, rolling-shutter artefacts, and fre-
quent dynamic objects, while fixed-camera surveil-
lance reduces viewpoint variation, but can include
sharp illumination transients such as headlights
entering and leaving the scene (Neumann et
al., 2018). The availability of correspondence is
another key distinction: some datasets provide
paired or pseudo-paired structure, while many
are unpaired collections. Cross-time correspon-
dences are particularly valuable for evaluation
because they help control content changes when
comparing day and night observations (Sakaridis
et al., 2019, 2025). Adverse conditions beyond
illumination also matter. Rain, fog, and snow
interact with night lighting and can dominate
the appearance gap, so datasets that explicitly
include these conditions reduce the risk that mod-
els are tuned only to clear night scenes (Sakaridis
et al., 2025). Finally, the type and reliability of
the annotations determine what can be evaluated.
Pixel-level labels, instance masks, and detection
boxes enable task-based evaluation, but nighttime

introduces genuinely ambiguous regions, moti-
vating uncertainty-aware protocols when avail-
able (Sakaridis et al., 2019, 2025). Table 4 sum-
marises these characteristics of the data set for
representative benchmarks and, crucially, indi-
cates which evaluation evidence is well sup-
ported given the available correspondence struc-
ture, modalities, and annotations.

No single benchmark covers all deployment
conditions, so the literature relies on comple-
mentary datasets. For driving and dense pre-
diction, Dark Zurich provides day, twilight and
night imagery with correspondences and a labelled
nighttime benchmark designed for uncertainty-
aware evaluation (Sakaridis et al., 2019). ACDC
extends this setting to multiple adverse con-
ditions, including night, and provides corre-
spondence structure and panoptic-style annota-
tions (Sakaridis et al., 2025). Nighttime Driving
is smaller, but widely used for nighttime seg-
mentation comparisons (Dai & Gool, 2018), and
NightCity provides a larger labelled set that high-
lights exposure effects in urban scenes (Tan et
al., 2021). For broader driving pipelines, large
suites such as BDD100K include night content in
realistic operating conditions (Yu et al., 2020),
while datasets such as nuScenes and Waymo are
often used when translation is evaluated indirectly
through downstream detection and tracking in
multi-sensor settings (Caesar et al., 2020a; Sun et
al., 2020).

For localisation under changing conditions,
Aachen Day–Night and RobotCar Seasons are
commonly used benchmarks for retrieval and
pose estimation on large illumination and con-
dition shifts (Sattler et al., 2018). The Oxford
RobotCar dataset provides repeated traversals
of the same route between seasons and light-
ing, supporting long-term cross-condition evalu-
ation (Maddern, Pascoe, Linegar, & Newman,
2017). For detection at night, NightOwls is a
dedicated pedestrian benchmark with dense anno-
tations in long video sequences (Neumann et
al., 2018), and ExDark provides object annota-
tions in low-light imagery that is frequently used
in recognition and detection studies, including
translation-based pre-processing (Loh & Chan,
2019). When the setting involves multi-sensor
fusion, aligned visible-thermal benchmarks such
as KAIST and LLVIP become relevant (Hwang,
Park, Kim, Choi, & So Kweon, 2015; X. Jia, Zhu,
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Li, Tang, & Zhou, 2021), and automotive thermal
datasets such as FLIR ADAS are used when trans-
lation is evaluated as part of a thermal perception
pipeline (Teledyne FLIR LLC, 2018).

7.2 Evaluation protocol and
common pitfalls

A recurring flaw in the translation of D2N and
N2D is the metric mismatch, that is, commonly
reported image metrics are weak predictors of out-
door vision utility. Pixel metrics such as PSNR
and SSIM assume accurate spatial correspondence
and are therefore meaningful only under truly
aligned pairs. In many D2N benchmarks, corre-
spondence is approximate, synthetic, or absent,
making pixel based scores difficult to interpret
and easy to over claim (Sakaridis et al., 2019,
2025). When ground truth is not available, dis-
tributional and perceptual measures such as FID
and LPIPS are often reported (Heusel, Ram-
sauer, Unterthiner, Nessler, & Hochreiter, 2017;
R. Zhang et al., 2018). However, these metrics can
miss critical local safety failures, such as small
object removal, lane boundary deformation, and
traffic sign hallucination. No reference image qual-
ity metrics such as NIQE and BRISQUE are
also problematic because their underlying nat-
ural image statistics are systematically violated
in nighttime imagery (Mittal, Moorthy, & Bovik,
2012; Mittal, Soundararajan, & Bovik, 2013).

Table 1 summarises the four evidence cate-
gories used throughout this survey. We annotate
each paper with one or more evidence codes:
P for perceptual and distributional similarity, S
for semantic and structural preservation, D for
downstream task utility and T for temporal sta-
bility in video settings. When reporting results,
authors should state which components are sup-
ported by the dataset and which are evaluated in
the paper, and avoid interpreting a single compo-
nent as sufficient evidence of utility. Pixel based
metrics should be reported only when pairing is
truly aligned and should not be treated as a proxy
for perceptual quality under approximate corre-
spondence. When claims concern robustness for
detection, segmentation, tracking, localisation, or
retrieval, we treat downstream evidence on real
nighttime data as essential. For video translation,
temporal evidence is expected in addition to per
frame reporting.

7.3 Integration driven evaluation

The practical value of IDT depends on how it is
used in an outdoor-vision pipeline. In some set-
tings, it acts as a pre-processing normaliser, in
others it serves as data augmentation, and in oth-
ers it is embedded in self-training or curriculum
adaptation. These integration choices determine
which failure modes matter and which evidence is
meaningful.

For system testing, translation can generate
controlled nighttime variants of daytime driv-
ing scenes, allowing consistency checks through
metamorphic relations between model output on
an original input and its systematically trans-
formed counterpart (Tian, Pei, Jana, & Ray, 2018;
M. Zhang, Zhang, Zhang, Liu, & Khurshid, 2018).
In this setting, the key requirement is to spec-
ify the validity conditions for the transformation
and to report the behavioural consistency crite-
ria. For detection-orientated use, N2D translation
can be applied online as a front-end normalisa-
tion step when detectors are trained predomi-
nantly on daytime data (Schutera et al., 2020).
Here, latency and temporal stability matter, and
evaluation should report detector performance
across multiple architectures and datasets, with
attention to small-object preservation. Instance-
aware translation is particularly relevant because
it directly targets the integrity of objects (Bhat-
tacharjee et al., 2020). For semantic segmenta-
tion and adaptation, translation is often coupled
with correspondence signals, curriculum, or self-
training to transfer daytime supervision to night-
time imagery (F. Huang, Yao, & Zhou, 2023;
Sakaridis et al., 2019; Wu, Wu, Guo, Ju, &
Wang, 2021). In this setting, semantic preserva-
tion evidence and benchmarking on established
nighttime protocols are central. For localisation
and retrieval, the objective is matchability rather
than photorealism, so evaluation should priori-
tise retrieval recall, keypoint match statistics, and
pose error (Anoosheh et al., 2019).

Across these integration settings, a consistent
implication is that realism metrics alone are insuf-
ficient. The evidence should match the operational
role of translation and expose the failure modes
most likely to affect downstream outdoor-vision
performance.
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Table 1: Four component evaluation protocol for IDT.

Code Component What to report in practice
P Perceptual and distribu-

tional similarity
Use coarse realism checks when ground truth is unavailable.
Report FID, optionally add KID; when paired or approximately
paired evaluation exists, report LPIPS. Avoid pixel metrics
unless alignment is truly valid.

S Semantic and structural
preservation

When labels or correspondences exist, evaluate preservation
of semantics and structure. For segmentation with ambiguous
nighttime regions, use uncertainty aware protocols when avail-
able. For localisation, prioritise matchability evidence such as
keypoint statistics and pose error.

D Downstream task utility When claims concern robustness or deployment benefit, report
task performance on real nighttime data, for example detection,
segmentation, tracking, or localisation metrics.

T Temporal stability for
video

When translation is applied to video, evaluate temporal coher-
ence using warping based consistency measures and sequence
level stability criteria, alongside per frame scores and relevant
sequence based downstream tasks.

8 Artefact availability review

Artefact availability matters because IDT papers
often report gains under severe illumination
changes, but empirical results can be difficult
to reproduce without a complete research com-
pendium, including the codebase, data process-
ing pipeline, checkpoints, and experimental set-
tings (Gundersen & Kjensmo, 2018; Haibe-Kains
et al., 2020; Pineau et al., 2021). This con-
cern is particularly acute for generative models,
where outcomes can vary with implementation
details, optimisation schedules, and evaluation
pipelines (Gundersen, Coakley, Kirkpatrick, &
Gil, 2022).

8.1 Audit protocol

We audited publicly available artefacts for rep-
resentative methods referenced in this survey
using official project pages and author maintained
repositories where possible. In addition to official
project pages and author maintained repositories,
we also checked links provided in the paper and
supplementary material, as well as any archival
releases referenced from those sources. The audit
reflects a snapshot as of December 19, 2025
, and may change as materials are released or
updated. This audit is a snapshot of the avail-
ability of public artefacts. We verified public
accessibility and documentation of the reported

materials, but we did not retrain models, exe-
cute training pipelines, or run evaluation scripts.
Availability therefore reflects whether an arte-
fact is publicly accessible and documented to an
operational standard, not whether it reproduces
reported numbers when executed.

For each method, we record five availability
signals using operational criteria. The Code is
marked as available only when a publicly accessi-
ble repository or archived release provides training
and inference code sufficient to run the method
from start to finish from input data to trans-
lated outputs. Weights are marked as available
only when pretrained checkpoints are provided for
at least one reported setting. Data is marked
as available only when working links and acqui-
sition instructions are provided for the datasets
used in the main experiments, including any access
procedures. The Recipe is marked as available
only when the release includes configuration or
hyperparameter files, an environment specifica-
tion, and explicit commands or scripts for training
and evaluation, together with dataset preprocess-
ing steps and data set splits used in the paper.
The license is marked as available only when
the release includes explicit licence terms for code
and, where specified, separate terms for pretrained
weights.

We prioritise artefacts released by the original
authors or their institutions. Third party reim-
plementations may be informative engineering
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references, but they are not treated as defini-
tive evidence of reproducibility unless explicitly
validated against the original results.

Table 3 reports on the artefact availability
matrix for the representative methods covered in
this survey. It indicates, per method, whether
code, pretrained weights, dataset access details,
a runnable training and evaluation recipe, and
explicit licence terms were publicly available at
the time of the audit. For readability, we use ✓ to
indicate available and a dash to indicate not
identified.

8.2 Artefact matrix and implications

Table 3 summarises the availability of artefacts for
selected methods. The table is intended as a trans-
parency aid rather than a judgement of scientific
merit. A method can be technically strong even if
artefacts are not publicly released, but the burden
of verification then shifts to the reader.

The following two implications are given. First,
comparisons should be conditioned on the repro-
ducibility tier. When weights or a complete recipe
are missing, reported gains can be difficult to val-
idate under a common protocol, and the cost of
reproduction can exceed the apparent margin of
improvement. Second, licencing should be treated
as a first-class deployment constraint: in safety-
relevant outdoor systems, unclear licencing terms
for code or pretrained weights can block adoption
even when an approach is technically promising.

We therefore encourage future work to release,
at minimum, a versioned repository with train-
ing and evaluation scripts, the exact dataset splits
used in the article, and explicit licences for code
and pretrained weights (Haibe-Kains et al., 2020;
Pineau et al., 2021).

9 Open problems and future
directions

Despite substantial progress in D2N image and
video translation, several challenges remain that
limit robustness, generalisation, and safe deploy-
ment in real-world outdoor vision systems. To
make these challenges actionable, we state them
in terms of dataset and protocol requirements:
what future benchmarks should contain and what
evaluation should report so that claims become
falsifiable and comparable.

9.1 Heterogeneous night conditions
and semantic faithfulness

Nighttime outdoor scenes exhibit strong spatial
heterogeneity, combining under-exposed regions
with saturated highlights from headlights, street
lamps, and reflective surfaces. Methods relying on
global appearance shifts often fail in this regime,
for example, by over-brightening dark areas or
suppressing highlight structure and colour infor-
mation (Jobson et al., 1997; Neumann et al.,
2018). The problem is compounded by ambigu-
ity: a translated image can appear realistic while
altering traffic signs, removing pedestrians, or
hallucinating lane markings, which is especially
risky in safety-critical settings (Blau & Michaeli,
2018; R. Zhang et al., 2018). Region-aware trans-
lation and physics-guided decomposition aim to
address mixed illumination by separating illumi-
nation components and applying different con-
straints to dark and glare-dominated regions (Lan
et al., 2024; Y.-J. Lee et al., 2025), while semantic
and instance constraints aim to anchor transla-
tion to task-relevant structure (Bhattacharjee et
al., 2020; Shiotsuka et al., 2022). However, exist-
ing benchmarks rarely stress-test these conditions
in a controlled manner.

Future datasets should therefore include
explicit subsets with mixed lighting events (head-
light glare, specular reflections, deep shadows) and
provide region-level evaluation hooks. At mini-
mum, these hooks can be implemented via repro-
ducible proxies such as saturation/highlight masks
and under-exposure masks; for a subset, human-
verified region annotations further improve diag-
nostic value. When label supervision exists, bench-
marks should include annotations that enable
semantic or instance evaluation on critical classes,
and when scenes contain genuinely ambiguous pix-
els or instances, uncertainty-aware labelling and
evaluation should be adopted rather than exclud-
ing difficult regions without disclosure (Sakaridis
et al., 2019, 2025).

Evaluation should be reported stratified by
degradation severity (e.g. saturation fraction and
under-exposure fraction) and by object size bins,
because many safety-relevant errors concentrate
in small objects and low-evidence regions. In
addition to perceptual metrics, protocols should
require explicit semantic-faithfulness evidence
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such as task-network consistency (e.g. segmenta-
tion/detection consistency before and after trans-
lation), object retention measures for critical
classes, and explicit accounting of both object
removal and hallucination rather than only quali-
tative examples. Reporting should include region-
wise summaries and representative failure cases
conditioned on region masks, so that improve-
ments cannot be driven solely by global image-
level scores.

9.2 Generalisation across locations,
weather, and sensors

Many translation models are overfitting to specific
camera pipelines, cities, or lighting infrastruc-
tures. Differences in sensor response, noise char-
acteristics, and illumination spectra can degrade
performance when models are applied outside
of their training domain (J. Liu et al., 2021;
Sakaridis et al., 2025). Adverse weather further
compounds the appearance gap and interacts with
night illumination in ways that are not captured
by clear-night benchmarks (Sakaridis et al., 2025).

Benchmarks should explicitly expose domain
factors (at least location and sensor/camera
pipeline; ideally weather) with enough samples
per factor level to support stratified evaluation.
Standard splits should include held-out domain
settings (e.g. an unseen city or unseen sensor
pipeline) and, where possible, combined adverse
conditions (e.g. night+rain/fog/snow) to prevent
tuning to clear-night statistics.

Claims of robustness should be supported by
cross-domain evidence: reporting should include
held-out-domain performance, and, when multi-
ple factors exist, a factor-wise performance matrix
rather than a single average. Improvements in
a single benchmark should be described as in-
domain gains unless they are validated across
datasets or explicitly held-out domains.

9.3 Temporal stability for video IDT

For surveillance and automated driving, tem-
poral instability is unacceptable. Flicker, colour
oscillation, and identity drift undermine opera-
tor trust and can degrade tracking, localisation,
and mapping pipelines (T.-C. Wang, Liu, Zhu,
Liu, et al., 2018; Wei et al., 2018). Although

recent video translation methods introduce tem-
poral constraints, evaluation still often prioritises
per-frame realism. Methods relying on optical
flow should explicitly analyse failure cases in low-
texture and noisy nighttime conditions, where flow
estimates are unreliable (Lai et al., 2018; Ruder et
al., 2016).

Video benchmarks should include sequences
with night-specific temporal stressors (headlights
entering and exiting, exposure shifts, specular
sweeps) and sufficient horizon length to mea-
sure drift, not only short clips. Evaluation should
treat temporal metrics as first-class outputs along-
side per-frame realism: motion-compensated con-
sistency measures and sequence-level stability
indicators should be reported, and long-horizon
behaviour should be summarised explicitly (e.g.
stability as a function of time or over event
segments containing illumination transients). For
outdoor vision relevance, reporting should include
downstream sequence-based evaluation (e.g. video
tracking/localisation) rather than only frame-wise
snapshots (T.-C. Wang, Liu, Zhu, Liu, et al., 2018;
Wei et al., 2018). For flow-based methods, reports
should include sensitivity analyses in flow failure
modes typical of nighttime video (Lai et al., 2018;
Ruder et al., 2016).

To support fair comparison and long-term
value in archival venues, reporting should stan-
dardise dataset splits and preprocessing pipelines,
training schedules and compute, and ablations iso-
lating the effect of key constraint families (Cyc/Id,
Sem/Inst, Corresp, Phys, Temp). When claims
concern downstream utility, evaluation should
include more than one perception model to reduce
model-specific bias. Finally, artefact availability
should be reported with versioning and explicit
licences for both code and pretrained weights.
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Table 2: Representative crosswalk from methods to constraints for IDT. Gap codes: I: illumination,
G: glare, N: noise, W: weather, M: motion or video. Constraint codes: Cyc or Id: cycle and identity,
Sem or Inst: semantic or instance or task network constraints, Corresp: contrastive or correspondence,
Phys: physics or decomposition, Temp: temporal. Primary evaluation evidence codes follow Table 1:
P: perceptual and distributional, S: semantic and structural, D: downstream task utility, T: temporal
stability.

Method Sup. Gap Constraints / priors Primary eval.

Cyc/Id Sem/Inst Corresp Phys Temp P S D T

Pix2Pix (Isola et al., 2017) Paired I ✓ ✓

CycleGAN (Zhu, Park, et al.,
2017)

Unpaired I ✓ ✓

UNIT (M.-Y. Liu et al., 2017) Unpaired I ✓ ✓

CUT (Park et al., 2020) Unpaired I ✓ ✓

ToDayGAN (Anoosheh et al.,
2019)

Unpaired/
task

I ✓ ✓ ✓

DUNIT (Bhattacharjee et al.,
2020)

Unpaired/
inst

I ✓ ✓ ✓ ✓

N2D-GAN (X. Li et al., 2022) Unpaired/
weak

I ✓ ✓ ✓

SGA-D2N (Bang et al., 2024) Unpaired/
sem+geom

I ✓ ✓ ✓

SPN2D-GAN (X. Li & Guo,
2023)

Unpaired/
sem

I ✓ ✓ ✓

RefN2D-Guide GAN (Ning &
Gong, 2023)

Unpaired/
ref+sem

I ✓ ✓ ✓ ✓

DiCo (Lan et al., 2023) Unpaired I ✓ ✓ ✓

N2D3 (Lan et al., 2024) Unpaired I,G,N ✓ ✓ ✓ ✓

RLA-Training (Y.-J. Lee et
al., 2025)

Unpaired+
paired/task

I ✓ ✓ ✓

AU-GAN (Kwak et al., 2021) Unpaired I,W ✓ ✓

Daydriex (E. Lee & Kang,
2021)

Unpaired/
aux

I ✓ ✓ ✓ ✓

vid2vid (T.-C. Wang, Liu,
Zhu, Liu, et al., 2018)

Paired/
(vid)

I,M ✓ ✓ ✓

MoCycleGAN (Chen et al.,
2019)

Unpaired/
(vid)

I,M ✓ ✓ ✓ ✓

UVCGAN (Torbunov et al.,
2023)

Unpaired I ✓ ✓

D2N ISP Synthesis
(Punnappurath et al., 2022)

Paired/
(synth)

I,N ✓ ✓

Paired-N2D (Lakmal et al.,
2024)

Paired/
(synth)

I ✓ ✓

DualGAN (Yi et al., 2017) Unpaired I ✓ ✓

CoMoGAN (Pizzati et al.,
2021)

Unpaired I ✓ ✓

ManiFest (Pizzati et al., 2022) Few-shot/
unpaired

I ✓

PITI (T. Wang et al., 2022) Paired/
Unpaired

I ✓

CycleGAN-Turbo (Parmar et
al., 2024)

Unpaired I,W ✓

pix2pix-Turbo (Parmar et al.,
2024)

Paired I,W ✓

Dark Side Augmentation
(Mohwald et al., 2023)

Unpaired/
task

I ✓ ✓

Continued on next page
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Table 2 (continued)

Method Sup. Gap Constraints / priors Primary eval.

Cyc/Id Sem/Inst Corresp Phys Temp P S D T

2PCNet (Kennerley et al.,
2023)

Unpaired/
task

I,G,N ✓ ✓

Night-to-Day (Online)
(Schutera et al., 2020)

Unpaired/
(vid)/task

I,M ✓ ✓ ✓

ForkGAN (Z. Zheng et al.,
2020)

Unpaired I,W ✓ ✓ ✓
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Table 3: Artefact availability matrix for selected methods referenced in this survey, derived from publicly
available repositories and project pages. “Recipe” denotes training and evaluation details sufficient for
a faithful rerun. “Licence” denotes explicit licensing terms for code and, where applicable, pretrained
weights. A blank entry indicates that the corresponding artefact was unavailable, not identified, or not
clearly specified at the time of the audit and should be independently verified.

Paper / Method Focus Code Wts. Data Rec. Lic.

Pix2Pix (Isola et al., 2017) Paired translation baseline ✓ ✓ ✓ ✓ ✓
CycleGAN (Zhu, Park, et al.,
2017)

Unpaired translation baseline ✓ ✓ ✓ ✓ ✓

UNIT (M.-Y. Liu et al., 2017) Shared-latent baseline ✓ - ✓ ✓ -
ToDayGAN (Anoosheh et al.,
2019)

N2D for localisation ✓ ✓ ✓ ✓ ✓

Daydriex (E. Lee & Kang,
2021)

N2D driving pipeline - - - - -

DiCo Lan et al. (2023) N2D for surveillance - - - - -

N2D3 (Lan et al., 2024) Degradation disentanglement - - ✓ - -
AU-GAN (Kwak et al., 2021) Adverse-condition translation (incl. N2D) ✓ ✓ ✓ ✓ -
DUNIT (Bhattacharjee et al.,
2020)

Instance-aware translation ✓ - ✓ ✓ -

SPN2D-GAN (X. Li & Guo,
2023)

Semantic-prior N2D ✓ - ✓ - -

Paired-N2D (Lakmal et al.,
2024)

Supervised N2D (synthetic pairs) ✓ - ✓ - -

GMA-CycleGAN (Yang et al.,
2023)

Thermal-to-visible translation - - ✓ - -

IR2VI (S. Liu et al., 2018) Thermal-to-visible (two-stage) - - - - -
PITI (T. Wang et al., 2022) Pretrained diffusion prior for translation ✓ ✓ ✓ ✓ ✓
CUT (Park et al., 2020) Contrastive unpaired translation baseline ✓ - ✓ ✓ ✓
vid2vid (T.-C. Wang, Liu,
Zhu, Liu, et al., 2018)

Video-to-video translation baseline ✓ ✓ ✓ ✓ ✓

UVCGAN (Torbunov et al.,
2023)

UNet-ViT CycleGAN variant (strong
unpaired baseline)

✓ ✓ ✓ ✓ ✓

CoMoGAN (Pizzati et al.,
2021)

Continuous time-of-day translation
(Day2Timelapse)

✓ ✓ ✓ ✓ ✓

Dark Side Augmentation
(Mohwald et al., 2023)

D2N augmentation for retrieval / metric
learning

✓ ✓ ✓ ✓ ✓

CycleGAN-Turbo / pix2pix-
turbo (Parmar et al., 2024)

One-step translation using text-to-image
backbones (incl. D2N, N2D)

✓ ✓ ✓ ✓ ✓

D2N ISP Synthesis (Punnap-
purath et al., 2022)

D2N synthesis (camera/ISP-aware) ✓ ✓ ✓ ✓ ✓

2PCNet (Kennerley et al.,
2023)

D2N UDA object detection (NightAug, 2-
phase consistency)

✓ ✓ ✓ ✓ ✓

traffic-pipeline (Alam, Par-
mar, et al., 2025)

Traffic video translation pipeline (N2D, D2N;
clear-to-rainy)

✓ ✓ ✓ ✓ ✓

DualGAN (Yi et al., 2017) Unpaired translation baseline (dual learning) ✓ ✓ ✓ ✓ ✓
EnlightenGAN (Jiang et al.,
2021)

Low-light enhancement baseline (if included) ✓ ✓ ✓ ✓ ✓

SCC (Structure Consistency
Constraint) (Guo et al., 2022)

Structure-preserving constraint for unpaired
translation

✓ - - - -

WKD (L. Zhang et al., 2022) Efficient translation via distillation (wavelet
KD)

✓ ✓ ✓ - -

ManiFest (Pizzati et al., 2022) Few-shot translation (includes
D2N/day2twilight)

✓ ✓ ✓ ✓ ✓

SAVI2I (Mao et al., 2022) Continuous multi-domain translation via
signed attribute vectors

✓ ✓ ✓ ✓ ✓

InstaFormer (Kim et al., 2022) Instance-aware I2I with Transformer ✓ - ✓ ✓ -
InstaGAN (Mo et al., 2018) Instance-aware I2I (object-centric transla-

tion)
✓ ✓ ✓ ✓ ✓

Continued on next page
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Paper / Method Focus Code Wts. Data Rec. Lic.

pix2pixHD (T.-C. Wang, Liu,
Zhu, Tao, et al., 2018)

High-resolution conditional GAN (semantic-
to-image)

✓ ✓ ✓ ✓ ✓

SPADE (Park et al., 2019) Semantic synthesis with SPADE (label/seg-
mentation to image)

✓ ✓ ✓ ✓ ✓

gans-traffic (Alam, Martens, &
Bazilinskyy, 2025)

Recycle-GAN traffic video translation (N2D,
D2N)

✓ ✓ ✓ ✓ ✓
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Table 4: Representative datasets used in day and night outdoor vision. “Pairing” denotes correspondences
across conditions or modalities. Protocol codes follow Table 1. The evaluation column prioritises task
aligned evidence rather than image realism metrics alone.

Dataset
(ref.) Platform Pairing Labels Sensors

Protocol
codes

Most
defensible
evaluation

Dark Zurich
(Sakaridis et al.,
2019)

Driving
(images)

Cross-time cor-
respondences

Semantic
masks;

uncertainty-
aware

evaluation

RGB P S D Segmentation:
mIoU and
uncertainty-
aware IoU;
translation:
perceptual
similarity on
correspondences
(where used);
downstream
robustness on
real night.

ACDC (Sakaridis
et al., 2025)

Driving
(images)

Normal-
condition
correspon-
dences for

adverse images

Panoptic
labels;

uncertainty
mask

RGB S D Dense perception:
panoptic quality,
mIoU, detection
mAP;
uncertainty-
aware
segmentation
when ambiguous
regions are
present.

Nighttime Driving
(Dai & Gool, 2018)

Driving
(images)

Unpaired
collection

Coarse
semantic masks

RGB S D Segmentation:
mIoU; adaptation
gains measured
on real night, not
only translated
imagery.

NightCity (Tan et
al., 2021)

Driving
(images)

Unpaired
collection

Fine semantic
masks

RGB S D Segmentation:
mIoU; report
sensitivity to
exposure and
illumination
modelling.

BDD100K (Yu et
al., 2020)

Driving
(video)

Unpaired
collection

Multi-task
labels (for

example boxes,
lanes, drivable
area, tracking)

RGB S D T Detection and
tracking: mAP
and tracking
metrics;
segmentation:
mIoU; stratify
results by night-
time and adverse
conditions.

Continued on next page
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Dataset
(ref.) Platform Pairing Labels Sensors

Protocol
codes

Most
defensible
evaluation

nuScenes (Caesar
et al., 2020a)

Driving
(video)

Unpaired
collection

Three-
dimensional

boxes; tracking

Multi-
sensor
suite

D T Detection and
tracking:
dataset-defined
metrics (for
example nuScenes
detection score
and mAP);
analyse
illumination
subsets when
used for day and
night robustness
claims.

Waymo Open
Dataset (Sun et al.,
2020)

Driving
(video)

Unpaired
collection

Two-
dimensional
and three-
dimensional

boxes; tracking

Multi-
sensor
suite

D T Detection and
tracking:
dataset-defined
detection and
tracking metrics;
report condition
stratification
when evaluating
day and night
robustness.

Oxford RobotCar
(Maddern et al.,
2017)

Driving
(repeated
traversals)

Repeated route
across

conditions

Ground-truth
poses and
odometry

(with derived
tasks in follow-

up work)

Multi-
sensor
suite

S D T Localisation: pose
error and recall
under changing
conditions; place
recognition
performance
across day and
night traversals.

RobotCar Seasons
(Sattler et al.,
2018)

Driving
(localisa-

tion
bench-
mark)

Query images
registered to a

prior map

Six degree-of-
freedom

camera poses

RGB S D Localisation:
recall within
standard error
thresholds and
median pose
error; report
results separately
for day and night
queries.

Aachen Day-Night
(Sattler et al.,
2018)

Handheld
or mobile

Query images
registered to a

prior map

Six degree-of-
freedom

camera poses

RGB S D Localisation:
recall and pose
error for day and
night queries;
matchability-
oriented analysis
when translation
is used.

Continued on next page
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Dataset
(ref.) Platform Pairing Labels Sensors

Protocol
codes

Most
defensible
evaluation

NightOwls
(Neumann et al.,
2018)

Static
surveil-
lance
(video)

Unpaired
collection

Pedestrian
boxes; tracking

identifiers

RGB D T Detection and
tracking:
pedestrian mAP
and tracking
stability;
sensitivity to
small and
partially
illuminated
pedestrians.

ExDark (Loh &
Chan, 2019)

Mixed
scenes

(images)

Unpaired
collection

Object boxes;
image-level

labels

RGB D Detection: mAP;
condition-wise
analysis across
low-light regimes
(avoid aggregated
reporting only).

KAIST
Multispectral
Pedestrians
(Hwang et al.,
2015)

Driving
(video)

Paired colour
and thermal

pairs

Pedestrian
boxes;

temporal
correspondence

RGB and
thermal

P D T Detection: mAP
for colour-only,
thermal-only, and
fused models;
report day and
night splits
explicitly.

LLVIP (X. Jia et
al., 2021)

Low-light
scenes

(images)

Paired visible
and infrared

pairs

Pedestrian
boxes

Visible and
infrared

P D Detection: mAP
with explicit
alignment
assumptions;
fusion and
translation
ablations with
consistent
downstream
evaluation.

FLIR ADAS
(Teledyne FLIR
LLC, 2018)

Driving
(video)

Time-
synchronised
thermal and
visible frames

Object boxes
(thermal-
oriented

annotations)

Thermal
and visible

P D T Detection: mAP;
cross-modal
robustness
reporting; day
and night
condition analysis
where available.

Continued on next page
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Dataset
(ref.) Platform Pairing Labels Sensors

Protocol
codes

Most
defensible
evaluation

D2-City (Che et
al., 2019)

Driving
(video)

Unpaired
collection
(condition

diversity incl.
night)

2D boxes;
tracking
identifiers

(subset fully
tracked)

RGB D T Detection and
tracking: mAP
and MOT metrics
(for example
IDF1/MOTA);
stratify by night
and adverse
conditions; report
long-tail cases
(glare, blur,
heavy traffic).

nuImages (Caesar
et al., 2020b)

Driving
(images)

Unpaired
collection
(includes
night)

2D boxes;
instance masks;

semantic
segmentation

masks

RGB S D 2D perception:
box AP and mask
AP; semantic
segmentation
mIoU; report
condition
stratification
(day/night,
rain/snow) when
claiming
illumination
robustness.

Tokyo 24/7 (Torii
et al., 2015)

Handheld
/ street-
view

retrieval

Same-place
queries across
day / sunset /

night

Place IDs;
retrieval

ground truth

RGB S D Place recognition:
Recall@K (and
mAP where
used); report
D2N and N2D
separately;
analyse failure
under extreme
lighting and
viewpoint
mismatch.

Gardens Point
Walking
(Sünderhauf et al.,
2015)

Handheld
walking
traversals

Sequence
correspondence
(day vs night;
viewpoint
change)

Sequence-level
correspon-
dences

(retrieval
pairing)

RGB
(night
often

contrast-
enhanced)

S D T Place recognition:
Recall@K under
day/night and
viewpoint shifts;
report robustness
under exposure/-
contrast
preprocessing
assumptions.

Continued on next page
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Dataset
(ref.) Platform Pairing Labels Sensors

Protocol
codes

Most
defensible
evaluation

MSLS (Mapillary
Street-Level
Sequences)
(Warburg et al.,
2020)

Street-
level place
recogni-
tion

(large-
scale)

Sequence-based
clustering;
includes

day/night test
cases

Geo/cluster
labels; retrieval
ground truth

RGB S D T Place recognition:
Recall@K with
standard MSLS
thresholds; report
performance on
D2N split
separately from
overall score;
include ablations
on sequence
aggregation.

CVC-14 (González
et al., 2016)

Driving /
roadside
(video)

Visible–FIR
paired streams

(approx.
synchronised)

Pedestrian
boxes

Visible and
FIR

P D T Pedestrian
detection: mAP
for visible-only,
FIR-only, and
fusion; report day
and night splits
explicitly and
quantify cross-
modal alignment
sensitivity.

UAVDark135
(B. Li et al., 2022)

UAV
tracking
(night)

Unpaired
collection
(night-only
benchmark)

Tracking boxes
(dense across

frames)

RGB D T Tracking:
success/precision
(AUC),
robustness to
motion blur and
low illumination;
report
per-attribute
breakdown and
temporal
stability.
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