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ABSTRACT 

 

Human error is a substantial factor in marine accidents, accounting for 85% of all reported 

incidents. By reducing the need for human intervention in vessel navigation, AI-based methods 

can potentially reduce the risk of accidents. AI techniques, such as Deep Reinforcement 

Learning (DRL), have the potential to improve vessel navigation in challenging conditions, 

such as in restricted waterways and in the presence of obstacles. This is because DRL 

algorithms can optimize multiple objectives, such as path following and collision avoidance, 

while being more efficient to implement compared to traditional methods. In this study, a DRL 

agent is trained using the Deep Deterministic Policy Gradient (DDPG) algorithm for path 

following and waypoint tracking. Furthermore, the trained agent is evaluated against a 

traditional PD controller with an Integral Line of Sight (ILOS) guidance system for the same. 

This study uses the Kriso Container Ship (KCS) as a test case for evaluating the performance 

of different controllers. The ship's dynamics are modeled using the maneuvering Modelling 

Group (MMG) model. This mathematical simulation is used to train a DRL-based controller 

and to tune the gains of a traditional PD controller. The simulation environment is also used to 

assess the controller's effectiveness in the presence of wind. 
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1. INTRODUCTION 

 

Internationally reported statistics indicate that the total percentage of accidents attributable to 

human error is close to 85%, caused fully or in part by improper or delayed human response. 

Such incidents not only incur human and economic losses, but also prove to be catastrophic to 

the environment. The recent incident at the Suez Canal (2021) involving the Ever-Given 

container ship is just one among many examples where the vessel could not maintain its path 

under the influence of strong winds. Automation using artificial intelligence can potentially 

reduce the risk of accidents by eliminating human intervention in vessel navigation. 

Advancements in the field of AI allow for more complex methods that can better adjust to 

uncertainties in the environment. Recent efforts of IMO include promoting the development of 

a regulatory framework for Marine Autonomous Surface Ships (MASS), allowing for designers 

and owners to consider autonomous ships in the maritime industry. 

 

While automated path following of marine vessels is widely explored in the light of traditional 

control, contemporary studies have been made into the use of reinforcement learning (RL) 

based methods for path following and collision avoidance. (Wang et al. 2019) used Q-learning 
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for path following of an Autonomous ship. (Sivaraj et al. 2022) uses a DQN Agent in the control 

of a KVLCC2 model for path following in calm water. (Woo et al. 2019) demonstrated 

successful control of a USV in path following using a Deep Deterministic Policy Gradient 

Algorithm. (Guan et al. 2022) uses a PPO agent to perform path following and behavior 

decision-making of an intelligent smart marine autonomous surface ship. DRL techniques have 

also been used to successfully incorporate obstacle avoidance capabilities, in compliance with 

COLREGs. (Shen et al. 2019) successfully trains a DQN agent for automatic collision 

avoidance of multiple ships. (Meyer et al. 2020) demonstrated the performance of a PPO 

algorithm in following a given path while avoiding multiple static obstacles. 

 

Although extensive research has been made on path following and obstacle avoidance 

capabilities of marine surface vessels, limited studies focus on the comparison between the 

effectiveness of these controllers with conventional methods for path following used in the 

industry. Therefore, the aim of this study is to develop a Deep Deterministic Policy Gradient 

(DDPG) agent for path following, and to access its performance with a conventional autopilot 

system consisting of an Integral Line-of-Sight (LOS) guidance and Proportional-Derivative 

(PD) controller.   

 

The remainder of this study is organized as follows. Section 2 explains the dynamics of the 

numerical model used for simulation in this study. Section 3 briefly introduces the basics of 

deep reinforcement learning and the fundamentals of a DDPG algorithm. Section 4 explains the 

framework used for training the DDPG agent for path following. Section 5 assesses the 

performance of the trained DDPG agent in both calm waters and in presence of environmental 

forces. The results are compared with a conventional autopilot system subject to identical 

conditions. Finally, Section 6 summarizes the results and discussion of this study. 

 

2.  SHIP NUMERICAL MODEL 

 

The KCS (Kriso container ship) design was conceived to provide data for validating CFD 

analysis for a modern container ship and was hence chosen to run numerical simulations and 

test the autopilot systems used in this study. The model data is readily available for research 

use, of which the main particulars are given in Table I. 

 

TABLE I: MAIN PARTICULARS 
Main Particulars Full Scale 1:75.5 Scale 

Hull 

Lpp (m) 230.0 3.0464 

D (m) 19.0 0.2517 

T (m) 10.8 0.143 

Displacement (m3) 52030 0.1209 

Propeller 

Type Fixed pitch Fixed pitch 

No. of blades 5 5 

Diameter (m) 7.9 0.105 

Rudder 

Type Semi-balanced horn rudder Semi-balanced horn rudder 

Profile NACA 0018 NACA 0018 

Aspect Ratio 1.8 1.8 

Test Conditions 

LCG(𝑥𝐺) 111.6 1.478 

Service Speed (U) (m/s) 24 1.1 
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The ship dynamics are mathematically modelled using the MMG (Maneuvering Modelling 

Group) model proposed in (Yoshimura and Masumoto 2012, Yasukawa and Yoshimura 2015). 

Three non-linear equations of motion are used to solve for the vessel’s motion in surge, sway, 

and yaw directions. Based on a given rudder command 𝛿𝑐, the equations of motion are solved 

progressively at each time step as an initial value problem using a Runga-Kutta explicit solver. 

 

Two coordinate frames are defined to model the dynamics of the vessel: The global coordinate 

system (GCS) and the body-fixed coordinate system (BCS). The GCS is an earth fixed 

coordinate frame with the z-axis pointed down, used to visualize the ship's trajectory. The body-

fixed reference frame is fixed to the current position of the vessel in the global frame. The axes 

are aligned such that the x-axis points to the vessel’s bow, y-axis to the starboard side of the 

vessel, and z-axis pointing down. The origin of the frame coincides with the point of 

intersection of the midship, centerline and waterline of the vessel. The above two frames can 

be visualized in Fig. 1 

Figure.1: GCS and BCS frames 

 

The position and orientation of the vessel in the global frame is denoted by 𝜂 = [𝑥𝑜 , 𝑦𝑜 , 𝜓]𝑇 

where 𝑥𝑜, 𝑦𝑜 is the position of the origin of BCS expressed in GCS, and 𝜓 is the heading angle, 

defined as the angle about the global z-axis between the positive x-axes of the GCS and BCS. 

Given the heading angle, the rotation matrix from BCS to GCS is given by: 

 

[𝑅(𝜓)]= [
𝑐𝑜𝑠(𝜓) −𝑠𝑖𝑛(𝜓) 0
𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓) 0

0 0 1

]    (1) 

 

The velocity vector of the vessel is denoted as V = [𝑢, 𝑣, 𝑟]𝑇, where u, v and r are surge, sway, 

and yaw velocities of the vessel respectively. The total speed, U of the vessel is given by 𝑈 =

√𝑢2 + 𝑣2 . The drift angle, 𝛽 is defined as the angle measured from the x-axis of the BCS to 

the total velocity U, measured about global z-axis, computed as 𝛽 = 𝑡𝑎𝑛−1(−𝑣/𝑢) . The vessel 

kinematics can therefore be expressed as below: 

 

�̇� = [𝑅(𝜓)]𝑉     (2) 

 

In order to generalize simulation results to any given scale of the vessel, the MMG model 

equations are non-dimensionalized in accordance with prime-II system of normalization as 

described by (Lekkas and Fossen 2012). For this purpose, surge and sway equations are non-

dimensionalized by dividing both sides of the surge and sway equations by (𝜌𝑈2𝐿𝑇)/2, where 

𝜌 is the density of sea water, L is the length of the vessel, U is the design speed of the vessel, 
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and T is the design draft of the vessel. Similarly, the yaw equation of motion is non-

dimensionalized by dividing both sides by (𝜌𝑈2𝐿𝑇)/2. The non-dimensional mass and added 

mass terms are specified in Table 2. 

 

TABLE 2: SHIP PARAMETERS 
Parameter Non-dimensional value 

Surge added mass (𝑚𝑥) 0.006269 

Sway added mass (𝑚𝑦) 0.155164 

Yaw added mass moment (𝐽
𝑧𝑧

) 0.009268 

Yaw mass moment of inertia (𝐼𝑧𝑧) 0.011432 

Mass of the vessel (m) 0.18228 

 

In order to simulate a more realistic response of the ship's rudder, the rudder variation rate �̇� is 

constrained to a first order system, capped to an upper limit of �̇�𝑚𝑎𝑥 (5°/𝑠𝑒𝑐) as suggested by 

(Deraj et al. 2023). 

 

3.  DEEP REINFORCEMENT LEARNING 

 

Reinforcement Learning (Sutton and Barto 2018) is a branch of machine learning which 

involves training an agent to choose optimal actions when interacting with an environment. 

This optimal behavior is learned through a balance between exploration and exploitation, with 

the agent accumulating knowledge by exploring the environment and exploiting based on the 

information it has learned. A typical iteration of training involves the agent performing an 

action 𝑎𝑡 at time t, based on the current state 𝑠𝑡 and policy 𝜋. Depending on the state transition, 

a reward 𝑟(𝑠𝑡, 𝑎𝑡) is generated by the environment, which is utilized to update the policy. RL 

environments are commonly defined in the form of one-step Markov Decision Processes 

(MDP), where the current state of the depends only on the state and the action chosen at the 

preceding time step.    

 

Classical, tabular solution methods used in RL, such as Q-learning, often fall short in efficiency 

when applied to continuous space and control tasks. The use of function approximators, 

especially deep neural networks, as policies has become the norm in solving high dimensional 

and complex environments. 

 

3.1 DEEP DETERMINISTIC POLICY GRADIENT (DDPG) 

 

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al. 2015) is a DRL algorithm that 

uses the actor-critic framework to extend Q-learning to a continuous action space. The policy 

and Q-value functions are both estimated by neural networks, namely the actor and critic 

networks respectively. In policy gradient methods, the actor network directly represents the 

agent's policy. The actor network takes as input the current state and outputs the action based 

on the policy encoded by the network. The critic network takes input both the state and action 

to predict the Q-value. DDPG also makes use of target networks like the DQN algorithm. 

 

In DDPG, noise is added to the action to aid the agent to explore more during training. The 

behavioral policy can be denoted as: 

𝑎𝑡 = 𝜇(𝑠𝑡) + 𝑁𝑡                                                       (3) 

 

Where 𝑁𝑡 is the noise added to the policy and 𝜇(𝑠𝑡) is the current policy. Noise is usually added 

through a correlated Ornstein-Uhlenbeck process or an uncorrelated Gaussian distribution. 
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4. IMPLEMENTATION OF DDPG ALGORITHM FOR SHIP NAVIGATION 

 

4.1 Observation State Space 

At each time step, the agent receives a vector of variables known as the observation state, which 

reflects the agent's present state. The agent utilizes this information to determine which action 

to take. The states are: 

                                                          𝑠𝑡 = [𝑑𝑐, 𝜒𝑒 , 𝑑𝑤𝑝, 𝑟]                                              (4)    

where, 𝑑𝑐 is the cross-track error, 𝜒𝑒 denotes the course angle error, 𝑑𝑤𝑝 is the distance to 

destination and r is the yaw rate of the vessel. 

4.2 Action space 

 

The action available for the agent to choose at any given time step is the commanded rudder 

angle, denoted as 𝛿𝑐 ∈  [−35°,  35°]. 
 

4.3 Reward Structure 

 

In RL, a reward is a scalar value that the agent receives after taking an action in the environment. 

Rewards help agents to learn an optimal action at each time step. The agent's objective is to 

maximize the cumulative sum of rewards over time, also known as the return. 

 

                                                  𝑟1 = 2 𝑒𝑥𝑝 (
−𝑑𝑐

2

12.5
)  − 1 

                                                  𝑟2 = 1.3 𝑒𝑥𝑝 (−10|𝜒𝑒|)  − 0.3                               (5) 

                                                  𝑟3 = 
−𝑑𝑤𝑝

4
 

Eq. (5) shows the rewards associated with the training of RL agent. The rewards are associated 

with cross track error, course angle error and yaw rate. 

 

            𝑟𝑡 = 𝑟1 + 𝑟2 + 𝑟3 

                                                     𝑅 =  ∑ 𝑟𝑡
𝑡
0                                                             (6) 

 

In eq. (6), 𝑟𝑡 is the reward at time step t and R is the episode return, which is the cumulative 

sum of rewards obtained at each time step. 

4.4 Training Process 
 

At the start of each training episode, the ship has an initial velocity in the surge direction with 

no velocity in sway and yaw direction. The destination point is chosen randomly between 8 to 

28 ship lengths from the vessel’s initial position at a random angle. The following termination 

conditions are evaluated at each timestep for ending an episode:  

 

 Successful termination: A training episode is considered successful if the vessel enters 

a tolerance region of 0.5L surrounding the destination waypoint. A positive terminal 

reward of +100 is granted in this case. 

 

 Time limit condition: The agent has a maximum of 160 time-steps to reach the 

destination. If it fails to do so within this time, the episode ends unsuccessfully.   
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 Missed waypoint condition: A missed waypoint condition is triggered when the ship 

passes beyond the destination waypoint, while its velocity vector points away from it 

(indicating that the vessel is moving away from the destination).  In this case, the 

episode ends unsuccessfully.  

 

4.5 Hyperparameters of the networks 

 

The agent is tuned by experimenting with different configurations for the actor, critic networks 

and other hyperparameters. The actor network as well as critic network both use 2 hidden layers 

with tanh activation in the hidden layers. After each time step, the transition is stored in the 

replay buffer for updating the neural network. The maximum replay buffer size is set to be 

100000 and it follows FIFO (First In First Out) method. 

 

              
 

Fig.2: Returns and Loss plot for DDPG agent. 

 

The best set of hyperparameters is given in Table I. Fig. 2 shows the plot of the returns and loss 

in every iteration during training.   

 
TABLE I: Hyperparameters for DDPG Model 

Hyperparameter Value 

Learning Rate 0.0008 

Activation Function tanh 

Optimizer Adam 

Actor Hidden Layers 64,64 

Critic Hidden Layers 64,64 

Discount Factors 0.97 

Batch Size 32 

Noise Multiplier 𝜎 =  0.0698;  𝜇 =  0 
Update Frequency 10 

Trained Duration 1280000 

Soft Update Factor 0.02 

 

5. RESULTS 

 

After training the agent for sufficient time steps, the trained agent is evaluated through various 

waypoint tracking scenarios. In this section, the agent robustness is first checked through 

waypoint tracking in different quadrants, followed by giving complex paths that are discretized 

into number of waypoints. Finally external disturbances such as winds are introduced in the 

environment and the agent is asked to follow these complex paths. 
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5.1 Waypoint Tracking 

 

To evaluate the DDPG agent's performance, destination waypoints were assigned in each of the 

four quadrants: (10L, 10L), (-10L, 10L), (10L, -10L), and (-10L, -10L). The vessel's starting 

point was set at the origin with a surge velocity of 1 and a heading angle (𝜓) of 0. Fig. 3 shows 

that the trained model reliably tracks the destination waypoint in all quadrants. 

    

                            

                        
                                             Fig.3: Single waypoint tracking 

 

As seen in Fig. 3, the model was successfully able to track waypoints in each quadrant.  

 

5.2 Path following through waypoint tracking. 

                
                  (a) Case I: Ellipse                                                  (b) Case II: Eight 

 

Fig.4: Path Following cases. 
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The following trajectories are defined for further evaluation which has been discretized into 

several waypoints. Fig. 4(a) shows an elliptical trajectory which is discretized into 15 

waypoints. The length of the semi-major axis and semi minor axis of the ellipse is 14L and 10L. 

The ship starts from point (14L, 0) with a heading angle of 𝜋/2 and a surge velocity of 1U. 

Similarly, as shown in Fig. 4(b) a shape of numeral ‘8’ is chosen and discretized into 23 

waypoints. In this case, the ship starts at point (0, 0) and the heading angle is 0 with a surge 

velocity of 1U. The radius of the circle in the trajectory is 9L. 

 

5.3 Performance with wind forces 

 

Wind forces and moments are modelled and included as suggested by (Deraj et al. 2023).        

Fig. 4 shows two specific cases that were examined, each with different wind speeds and 

directions. Even though the DDPG agent was trained only on calm water conditions, it can be 

inferred from the figures that the trained agent is able to compensate for external disturbances 

and successfully track the waypoints. 

               
 

Fig.5: Path following cases in presence of constant and uniform wind. 

 

6. DISCUSSION 

 

6.1 Comparison with a conventional autopilot system 

 

In this section, a comparison is made between the DDPG agent's ability to follow a path with 

that of a conventional autopilot system consisting of a PD controller and ILOS guidance system. 

A PD controller ensures that the vessel's heading angle 𝜓 converges to a desired heading angle 

𝜓𝑑. The desired heading angle 𝜓𝑑 is obtained using the integral line of sight (ILOS) guidance 

law as described by (Fossen 2021). The error e is determined as the difference between the 

current heading angle 𝜓 and the reference value 𝜓𝑑, and is expressed in eq. 7(a). Similarly, eq. 

7(b) represents the time derivative of the error. 

 

                                                                 𝑒 = 𝜓𝑑 − 𝜓                                                                  (7(a)) 

�̇� = 𝜓�̇� − �̇� = −r                                                     (7(b)) 

 

Thus, the proportional derivative (PD) control law can be expressed as 

    𝛿𝑐 = 𝐾𝑝𝑒 + 𝐾𝑑�̇� = 𝐾𝑝(𝜓𝑑 − 𝜓) − 𝐾𝑑𝑟                                         (8) 

where 𝛿𝑐 represents the commanded rudder angle 
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Fig. 6: Comparison between DDPG agent and a PD controller in calm water. 

 

𝐾𝑝 and 𝐾𝑑 corresponds to the proportional and derivative gains of the PD controller 

respectively. These gains are adjusted to minimize the deviation of the vessel's trajectory from 

the desired trajectory. In addition, an ILOS guidance algorithm utilizes a look-ahead distance 

parameter Δ and an integral gain k, which determines the vessel’s path tracking behavior.  

   

After tuning the controller and guidance laws, 𝐾𝑑= 4.0 and 𝐾𝑝 = 2.5 for the PD controller gains, 

Δ = 2L and k = 0.05 for the lookahead distance and integral gain of the ILOS guidance 

respectively were found to provide the best performance for the chosen vessel.  

 

Fig. 6 shows that the DDPG controller performs slightly better than the PD controller in terms 

of the RMS of cross track error with an improvement of 8% compared to the PD controller. 

However, the DDPG agent imposes a higher controller effort than the PD controller as well. 

 

       
Fig. 7: Comparison between DDPG agent and a PD controller in presence of wind.  

 

Fig. 7 compares the performance between the DDPG agent and the conventional system in the 

presence of wind. A similar improvement of 7.5% in the RMS of cross track error can be 

observed with the DDPG agent here as well, but at the cost of more controller effort. 

 

7. CONCLUSION 

 

The findings of this study demonstrate the effectiveness of utilizing a DRL-based controller, 

specifically a DDPG agent, for path following of a ship through waypoints. By training the 

DDPG agent, the agent was able to successfully navigate through complex paths that were 

represented by waypoints. The trained DDPG agent seems to demonstrate slightly better path 

following behavior compared to a conventional autopilot system. However, this comes at a cost 

on the rudder controller effort which can be minimized with better tuning of hyperparameters.  
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Further research in this area may involve exploring the use of more advanced DRL algorithms 

and improved reward structures that could improve the performance of the controller, while 

minimizing controller effort. Furthermore, the current DRL framework will be enhanced to 

include obstacle and collision avoidance, as well as adherence to COLREGs, and a subsequent 

comparison with traditional collision avoidance methods employed in the marine industry.  
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