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ABSTRACT

KEYWORDS Reinforcement Learning; Deep Learning; Autonomous Vehicle;

Path-following; Obstacles Avoidance; Machine Learning Controller

The majority of global marine accidents are caused by human decision-making errors,

which has resulted in increased interest in automation within the marine industry.

However, obstacle avoidance for autonomous surface vehicles in unknown environments

is particularly difficult. This study investigates the possibility of utilizing a deep

reinforcement learning (DRL) approach to control an underactuated autonomous surface

vehicle following a predetermined path while avoiding collisions with static and dynamic

obstacles. The ship’s movement is modelled using a three-degree-of-freedom (3-DOF)

dynamic model, with the KRISO container ship (KCS) being selected for the study due to

its extensive use in previous research and readily available hydrodynamic coefficients for

numerical modelling. The study evaluates the performance of various DRL algorithms,

such as Deep Q-Network (DQN), Deep Deterministic Policy Gradient (DDPG), and

Proximal Policy Optimization (PPO) algorithms, for path following and their effectiveness

in the presence of wind, as well as comparing them to the traditional PD controller. The

study also explores DQN and DDPG algorithms for both static and dynamic obstacle

avoidance and proposes a hybrid network that uses two networks for improved path

following and obstacle avoidance capabilities.
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Action A decision or command made by the
controller to transition the autonomous
ship from one state to another..

Actor-Critic A hybrid RL algorithm that combines
elements of both policy gradient methods
(actor) and value-based methods (critic) to
learn both a policy and a value function
simultaneously..

Agent The entity or system (in this case, the
autonomous ship) that interacts with the
environment and makes decisions based on
the received observations..

Autonomous Ship A vessel capable of operating and
navigating without direct human
intervention..

Controller A device or algorithm responsible for
controlling the behavior and actions of a
system or agent..

Deep Q-Network A deep neural network architecture used to
approximate the Q-function in Q-learning,
allowing for more complex and
high-dimensional state spaces..

Deep Reinforcement Learning A branch of machine learning that combines
deep neural networks with reinforcement
learning algorithms to train agents to make
sequential decisions in an environment..

Experience Replay A technique in DRL where the agent’s
experiences (state, action, reward, next
state) are stored and sampled randomly
during training to break the temporal
correlation between consecutive samples..

Exploration-Exploitation Tradeoff The balance between exploring new actions
and exploiting known actions to maximize
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the cumulative reward in RL..

Greedy Policy A policy that always selects the action with
the highest estimated value, based on the
learned Q-function or policy network..

Line-of-Sight (LOS) A straight line connecting an observer or
reference point to a target object..

Markov Decision Process A mathematical framework used to model
decision-making problems in RL,
characterized by states, actions, rewards,
and transition probabilities..

Observation Information perceived or sensed by the
agent about the environment, which is
used to determine the current state..

Policy A strategy or rule that guides the decision-
making process of an agent in RL, mapping
states to actions.

Policy Gradient A class of RL algorithms that directly
optimize the policy by estimating the
gradient of expected rewards with respect
to the policy parameters..

Policy Network The neural network component in DRL
that maps states to actions and is trained to
optimize the decision-making process..

Proportional-Derivative (PD) Controller: A control algorithm that combines
proportional and derivative terms to
generate control signals based on the error
between the desired setpoint and the
measured output..

Q-Learning A model-free RL algorithm that learns an
action-value function, known as the
Q-function, to estimate the value of taking
a particular action in a given state..

Reinforcement Learning A type of machine learning where an agent
learns to interact with an environment to
maximize a cumulative reward signal..

Reward A numerical signal provided by the



environment to evaluate the desirability of
a particular action or state..

Simulation Environment A virtual or simulated representation of the
real-world environment, used for training
and evaluating the DRL-based controller
without risks or costs associated with real-
world testing..

State A representation of the current condition or
configuration of the autonomous ship and
its environment..

Value Function A function that estimates the expected
return or value of being in a particular
state or taking a specific action in RL..
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NOTATION
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𝜒𝑒 Course angle error
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¤𝑒 Rate of change of heading error

¤𝛿 Rudder rate

¤𝛿𝑚𝑎𝑥 Maximum rudder rate

¤𝜓𝑑 Rate of change of desired heading angle

𝜖 Probability with which the RL agent takes a random action

𝜂 Ratio of propeller diameter to the rudder height

𝛾𝑅 Flow straightening factor of hull

𝛾𝑤 Relative wind angle with respect to ship

𝜅 An experimental constant for expressing 𝑢𝑅

𝜋 Policy of Markov Decision Process
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𝜌 Density of water
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

pproximately 80-85% of marine-related accidents are attributed to human error, posing

risks to human lives, the environment, and significant financial losses for ship owners

Baker and McCafferty (2005). A notable incident exemplifying this is the Ever Given

accident in the Suez Canal in 2021, where strong winds caused the vessel to deviate

from its intended course. In light of these challenges, the emergence of advanced AI

technology, particularly reinforcement learning (RL), offers promising opportunities for

the maritime industry to mitigate such accidents. RL can provide effective solutions

for ship path following, trajectory tracking, and collision avoidance, thus reducing the

occurrence of hazardous incidents.

Nevertheless, the integration of RL-based automation solutions in the maritime sector

has implications for the workforce and human involvement in maritime operations. While

automation can enhance efficiency, minimize human errors, and enhance safety, concerns

about job displacement and shifts in job roles arise. To address these challenges and

ensure a successful transition, it is crucial to prioritize the collaboration between humans

and AI systems. This can be accomplished through proactive workforce planning,

implementation of upskilling and reskilling programs, and the creation of new roles that

complement and augment the capabilities of AI systems. Effective collaboration among

industry stakeholders, policymakers, and labor representatives is paramount to establish

guidelines, regulations, and ethical frameworks that address the social and economic

implications of AI adoption. This approach ensures that all stakeholders can maximize

the benefits of AI while safeguarding the well-being and interests of the workforce.



1.2 LITERATURE REVIEW

The reinforcement learning (RL) method operates on a reward and penalty system, where

agents are incentivized for actions that achieve goals and punished for those that have

negative outcomes. As the agent interacts with the system, it learns from experience to

consistently make choices leading to higher rewards and avoid those that lead to lower

rewards. This type of data-driven controller is model-free, meaning that no model of the

system being controlled is required. The system dynamics and control strategy are learned

by the agent through interaction with the environment. Traditional RL uses Q-tables to

store the action-choosing policy of the agent, which document the expected reward for

all possible combinations of discrete states and actions. This table is updated every time

the agent moves to a new state through a chosen action from the previous state. However,

recent advancements in deep learning have led to the development of deep reinforcement

learning (DRL), which replaces Q-tables with neural networks to store the policy of

the agent (Mnih et al., 2013). The utilization of deep reinforcement learning (DRL)

techniques improves upon traditional RL methods, particularly in handling continuous or

discrete state and action spaces. DRL leverages deep neural networks to approximate

value functions or policy functions, enabling the handling of high-dimensional and

continuous state spaces (Perera et al., 2015). By incorporating deep learning, DRL

algorithms can learn complex representations and capture intricate patterns in the

environment. This allows for more efficient exploration and exploitation, leading to

improved decision-making in dynamic and uncertain environments. Additionally, DRL

can handle both continuous and discrete action spaces by employing various neural

network architectures, such as deep Q-networks (DQN) or actor-critic models, which

learn value or policy functions directly from raw sensory inputs.

Conventional autopilots typically rely on line of sight (LOS) guidance systems and

proportional-integral-derivative (PID) controllers for achieving waypoint tracking in path

following scenarios (Lekkas and Fossen, 2012; Moreira et al., 2007). Traditional methods,

including LOS guidance systems and PID controllers, are well-suited for situations with
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clearly defined paths and visible obstacles. These methods assume predictable system

dynamics and allow control objectives to be expressed mathematically. In such cases,

a separate path-planning algorithm is employed in conjunction with the controller to

determine desired waypoints and adapt the path when static or dynamic obstacles are

encountered. However, dynamically updating the path in real-time presents a significant

challenge, requiring robustness and computational power. The emergence of AI-based

control strategies offers a new approach where a single controller can handle both control

and path planning functions without extensive real-time computations. This approach

has demonstrated promise in specific applications, such as active heave compensation

(Zinage and Somayajula, 2020, 2021; Zinage, 2021). However, there is a limited number

of studies that effectively compare DRL-based controllers with traditional methods

Sivaraj et al. (2022).

Reinforcement Learning (RL) methods have gained increasing attention in recent years

as a promising approach to tackling path-planning problems in various domains. Many

studies have explored the potential of RL methods for path planning, each with its

own unique focus and contributions. For example, Wang et al. (2018) investigated the

application of Q-learning algorithms to path planning and demonstrated that the trained

agent could successfully plan paths and avoid static obstacles. However, their study did

not take into account the dynamics of the vessel, and it was limited to planning a path that

only avoided static obstacles. Another study by Shen et al. (2019) focused on collision

avoidance of multiple ships using a deep Q-learning algorithm. They demonstrated that

their algorithm effectively prevented collisions among three ships in simulations, where

the dynamics of the ships were modelled using Nomoto’s first-order model. However,

their study also revealed that the waypoints could not be effectively tracked with obstacle.

Furthermore, the study was conducted in a rectangular basin, and the results were not

validated in a real-world setting. In contrast, Sivaraj et al. (2022) developed a Deep

Q-network (DQN) for path following and heading control of a KVLCC2 tanker in calm

water and waves. Their study focused on training different agents to track various
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headings, and they demonstrated that the trained agents were able to effectively control

the vessel’s heading and track the desired path. The study also compared the performance

of the DQN-based method with a conventional proportional-integral-derivative (PID)

controller and showed that the DQN-based method outperformed the PID controller in

terms of tracking accuracy and robustness to disturbances.

Chen et al. (2019) developed a Q-learning-based model to implement a practical path

following algorithm for under-actuated cargo ships using Nomoto’s first order equation.

Their study showed that the Q-learning-based model outperformed traditional path

planning algorithms like RRTs and A*, with shorter path lengths and smoother turns. In

a different study, Woo et al. (2019) trained a Deep Deterministic Policy Gradient (DDPG)

based steering controller and used it in combination with a vector field guidance law to

achieve path following. Their study compared the performance of the steering controller

at different levels of training using simulations and experiments on an unmanned surface

vehicle (WAM-V). However, their study did not compare the performance of the steering

controller with traditional control approaches. Martinsen and Lekkas (2018) utilized

DDPG models for straight-line path following and transfer learning to follow curved paths

for three different vessels. Their study demonstrated the effectiveness of DRL-based

guidance through simulations and showed that it could accumulate better rewards than

traditional Line-of-Sight (LOS)-based guidance. Similarly, Zhou et al. (2019) used a

Deep Q-network (DQN) for path planning of a single USV and USV formation, with a

focus on the kinematics of the vessels rather than a dynamic model. The simulations

showed that the developed method could effectively avoid collision with static obstacles

while maintaining formation between three USVs.

There are several studies that compare the effectiveness of DRL-based controllers to a

different path-planning algorithm. The dynamic window approach (Fox et al., 1997) is one

of the methods for path planning and collision avoidance. Chun et al. (2021) applied the

Proximal Policy Optimization (PPO) algorithm to implement COLREGs (International
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Regulations for Preventing Collisions at Sea). They compared the performance of the

PPO algorithm with that of the A* algorithm and observed that the maximum Collision

Risk (CR) was significantly reduced with the PPO algorithm. Woo and Kim (2020)

utilized a Semi Markov Decision Process (SMDP) model to implement COLREGs and

suggested a technique where a USV can perceive its surroundings by utilizing a grid map

representation. The creation of this grid map representation is a vital element of their

proposed approach. By providing details to the convolutional neural network (CNN), the

CNN’s ability to extract features can be adjusted to foster collision situation awareness.

The path planning and navigation study by Garrido et al. (2006) utilized the Voronoi

diagram and fast marching method. Firstly, the safest regions are identified by employing

the Voronoi diagram. Secondly, the fast marching method is applied to the areas extracted

by the Voronoi diagram to determine the shortest path. Lazarowska (2020) utilized

a discrete Artificial Potential Field (APF) to obtain a collision-free trajectory for an

own ship in near real-time and optimized the trajectory using a Path Optimization

Algorithm (POA). In a study conducted by Lyu and Yin (2019), an approach was

suggested for achieving deterministic path planning for Unmanned Surface Vehicles

(USVs) in a dynamic environment. The method employed a modified Artificial Potential

Field (APF) to address the issue of collision avoidance in path planning. Chen et al.

(2017) used the barrier function for obstacle avoidance and compared it with a potential

field method and the Hamilton-Jacobi method (Takei et al., 2010). Zhou et al. (2019)

implemented cooperative path planning for a surface vessel using deep reinforcement

learning. They showed that their method effectively avoided collision with static obstacles

while maintaining a formation between three USVs. Xu et al. (2022) developed the path

planning and dynamic collision avoidance (PPDC) algorithm to ensure the safe navigation

of Unmanned Surface Vehicles (USVs). Their approach showed good performance

in simulations with dynamic obstacles. Zhao et al. (2019) implemented the Proximal

Policy Optimization (PPO) algorithm for path following and following COLREGs, and

compared it against the traditional Proportional Integral Derivative (PID) controller.
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Their study showed that the PPO algorithm had superior performance in terms of tracking

accuracy and smoothness.

Several researchers have attempted to integrate path planning with compliant behavior

with the Convention on the International Regulations for Preventing Collisions at Sea

(COLREGs) for autonomous ships. By incorporating COLREGs into RL algorithms,

autonomous ships can navigate in accordance with international maritime regulations,

ensuring safe interactions with other vessels and avoiding collisions. For instance, Guo

et al. (2020) implemented a path planning agent based on DDPG to choose continuous

actions for rudder angle and speed to ensure COLREGs compliance. However, details of

the vessel dynamics used for training were not provided. The study combined artificial

potential field (APF) with the DDPG method and reported that this method converged

faster and required fewer training episodes and time. Additionally, Shen and Guo (2016)

used an actor-critic algorithm for path-following, with reward functions based on the

error compared to a reference course. They later extended their method to include

limiting lines and navigational polygons to prevent ship collisions (Shen et al., 2019). In

comparison, Layek et al. (2017) compared DDPG and NAF-based models, with both

outperforming random search-based control during passage through a specified gate

with random initial orientations. However, the study only considered the kinematics

of the vessel and ignored simulation dynamics. Zhao et al. (2019) developed a PPO

algorithm that utilized the LOS guidance system to navigate a ship simulated by the

3-DOF dynamic model. The study compared the DRL controller against a traditional

PID controller and concluded that the RL controller resulted in a smaller cross-track

error. Similarly, Heiberg et al. (2022) developed a PPO algorithm for path following

and obstacle avoidance using collision risk theory, while Zhao and Roh (2019) proposed

multi-ship collision avoidance based on DRL by categorizing target ships according

to their regions relative to the autonomous ship, demonstrating the autonomous ship’s

ability to follow some of the COLREGs rules.
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In terms of computational requirements, the RL controller demonstrates significant

advantages once it is trained offline, demanding minimal time and computational power

for executing actions, typically measured in microseconds. Although the RL controller

may exhibit slightly longer computation times for waypoint tracking compared to the

PD controller with ILOS guidance system, it remains relatively fast, delivering outputs

within fractions of a second. Conversely, when obstacles are present, the traditional

controller relies on a path planner that requires more time compared to the DRL-based

approach.

The integration of RL-based automation solutions in the maritime industry carries

implications for the workforce and human involvement in operations. While AI

technologies offer benefits like enhanced efficiency and safety, concerns arise regarding

potential job displacement and the need for reskilling. To ensure a smooth transition and

maximize benefits for all stakeholders, effective management of AI technology

integration becomes crucial. This entails comprehensive workforce planning, including

training programs designed to equip employees with the necessary skills to work

alongside AI systems.

Building trust and facilitating effective collaboration between human operators and AI

systems are essential for successful integration. Additionally, addressing ethical and

legal considerations, ensuring data privacy and accountability, and promoting fairness in

decision-making are important steps for maximizing benefits and minimizing potential

risks. Striking a balance between the potential of RL-based automation and the well-being

and involvement of the maritime workforce is vital for the successful adoption of AI

technologies in the industry.

1.3 OBJECTIVE

• Investigate the effectiveness of DRL-based controllers in a practical scenario
involving a container ship.

7



• Evaluate the performance of DQN, DDPG, and PPO algorithms on the KCS hull
with known hydrodynamic coefficients.

• Develop a DRL-based controller for the ship’s path-following task considering a
nonlinear model and incorporating environmental forces.

• Compare the performance of the DRL-based controller with a traditional PD
controller utilizing an ILOS guidance system.

• Explore waypoint tracking accuracy of the DRL-based controller.

• Assess collision avoidance capabilities of the DRL-based controller with static and
dynamic obstacles.

• Investigate a hybrid architecture of the controllers using multiple neural networks
to enhance obstacle avoidance and waypoint tracking accuracy.

1.4 SCOPE

• Comparison of DRL-based methods and traditional methods for path following
and collision avoidance in the context of ship navigation.

• Development of a DQN-based controller for path following of a ship governed by
a nonlinear model.

• Evaluation of the performance of DQN, DDPG, and PPO algorithms on the KCS
hull, a benchmark vessel with known hydrodynamic coefficients.

• Investigation of the application of DRL-based controllers in practical scenarios
involving a container ship.

• Assessment of the DRL-based controller’s performance in calm waters and in the
presence of significant environmental disturbances.

• Verification of simulation results through field experiments.

• Exploration of collision avoidance with both static and dynamic obstacles.

• Examination of waypoint tracking accuracy.

The thesis is structured as follows to ensure a cohesive and organized presentation of the

research. In Chapter 2, a detailed overview of the KCS vessel’s dynamics is provided,

including an exploration of the non-linear equations of motion and simulated manoeuvring
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tests. Chapter 3 delves into the fundamentals of RL and Q-learning algorithms, offering

comprehensive explanations of the DQN, DDPG, and PPO algorithms. Moving on to

Chapter 4, the problem of ship navigation is defined within the RL framework as a

suitable learning environment. Chapter 5 presents the experimental and simulation results,

examining the performance of RL agents across various manoeuvres, incorporating the

modeling of wind forces, and analyzing path following in the presence of wind, static

obstacles, and dynamic obstacles. Finally, Chapter 6 serves as a summary, discussing the

obtained results, reflecting on the study’s findings, and drawing meaningful conclusions.
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CHAPTER 2

SHIP DYNAMICS

For the purpose of evaluating the control algorithms employed in this study, numerical

simulations were conducted on the KCS vessel. The mathematical modelling of the

ship dynamics is performed using the MMG (Maneuvering Modelling Group) model,

as described by Yasukawa and Yoshimura (2015). The 3-DOF non-linear equations of

motion, which include surge, sway, and yaw motions, are utilized to calculate the ship’s

maneuvering motions. An initial value problem is solved progressively at each time step,

using a Runge-Kutta implicit solver. The commanded rudder angle 𝛿𝑐 was provided as

an input at each time step. Table 2.1 presents the details of the KCS vessel that was used

for simulating the ship dynamics.

Table 2.1: KCS ship parameters

Ship Parameter Value

Length between perpendiculars (𝐿) 230𝑚

Length overall (𝐿𝑂𝐴) 232.5𝑚

Depth moulded (𝑑) 19𝑚

Beam (𝐵) 32.2𝑚

Draft (𝑑𝑒𝑚) 10.8𝑚

Displacement 53330.75 𝑡𝑜𝑛𝑠

LCG (𝑥𝐺) −3.408𝑚

Radius of gyration 57.5𝑚

Design speed (𝑈) 12.347𝑚/𝑠

The vessel’s motion is tracked using two coordinate systems: a global coordinate system



(GCS) and a body coordinate system (BCS). The GCS is fixed to the Earth and has

its z-axis pointing downwards, while the BCS is fixed to the vessel and moves with

it. The origin of the BCS is located at the intersection of the midship, centerline, and

waterline of the vessel, with its x-axis pointing towards the bow, y-axis towards starboard,

and z-axis towards the keel. These coordinate frames are depicted in Fig. 2.1. The

heading angle 𝜓 is defined as the angle between the x-axes of the GCS and BCS frames.

The vessel’s position and orientation are denoted by 𝜼 = [𝑥𝑜, 𝑦𝑜, 𝜓]𝑇 , where 𝑥𝑜 and 𝑦𝑜

denote the position of the BCS origin in the GCS. The velocity vector of the vessel in the

BCS is V = [𝑢, 𝑣, 𝑟]𝑇 , where 𝑢, 𝑣, and 𝑟 represent the surge, sway, and yaw velocities,

respectively, expressed in the BCS. The vessel’s speed is given by 𝑈 =
√
𝑢2 + 𝑣2, and

the drift angle (𝛽) is defined as the angle between the total velocity vector and the

longitudinal direction of the vessel, given by 𝛽 = tan−1 (−𝑣/𝑢). The kinematics of ship

motion is described by (2.1).

¤𝜼 = [𝑅(𝜓)]V (2.1)

where [𝑅(𝜓)] represents the rotation matrix given by

[𝑅(𝜓)] =


cos(𝜓) − sin(𝜓) 0

sin(𝜓) cos(𝜓) 0

0 0 1


(2.2)

Any vector in BCS when pre-multiplied by the rotation matrix will result in the same

vector expressed in GCS.

The MMG model used for simulating ship maneuvering (Yoshimura and Masumoto,

2012) is shown in (2.3).
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Figure 2.1: Representation of ship kinematic variables

(𝑚 + 𝑚𝑥) ¤𝑢 − 𝑚𝑣𝑟 − 𝑚𝑥𝐺𝑟2 = 𝑋

(𝑚 + 𝑚𝑦) ¤𝑣 + 𝑚𝑥𝐺 ¤𝑟 + 𝑚𝑢𝑟 = 𝑌

(𝐼𝑧𝑧 + 𝐽𝑧𝑧) ¤𝑟 + 𝑚𝑥𝐺 ¤𝑣 + 𝑚𝑥𝐺𝑢𝑟 = 𝑁

(2.3)

In (2.3), variable 𝑚 represents the mass of the ship, while 𝐼𝑧𝑧 corresponds to the second

moment of inertia in the yaw direction. The added masses associated with surge, sway,

and yaw are represented by 𝑚𝑥 , 𝑚𝑦, and 𝐽𝑧𝑧, respectively. The variables 𝑋 , 𝑌 , and 𝑁

represent the external forces acting on the vessel in the surge, sway, and yaw directions,

respectively. All these variables are expressed in the BCS coordinate frame.

To non-dimensionalize the surge and sway equations of motion, both sides of the equations

are divided by 𝜌

2𝑈
2𝐿𝑑𝑒𝑚, where 𝜌 represents the density of seawater, 𝐿 is the vessel’s

length, 𝑈 is the vessel’s design speed, and 𝑑𝑒𝑚 is the vessel’s draft. The yaw equation

of motion is similarly non-dimensionalized by dividing both sides by 𝜌

2𝑈
2𝐿2𝑑𝑒𝑚. This

normalization method follows the prime-II system described by Fossen (1999). Table
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Table 2.2: Prime-II system of normalization

Parameter Prime-II system
Length 𝐿

Velocity 𝑈

Angular velocity 𝑈/𝐿
Time 𝐿/𝑈
Acceleration 𝑈2/𝐿
Angular acceleration 𝑈2/𝐿2

Mass 0.5𝜌𝐿2𝑑𝑒𝑚
Force 0.5𝜌𝑈2𝐿𝑑𝑒𝑚
Moment 0.5𝜌𝑈2𝐿2𝑑𝑒𝑚

Table 2.3: Ship parameters

Parameter Non-dimensional value
Surge added mass (𝑚𝑥) 0.006269
Sway added mass (𝑚𝑦) 0.155164
Yaw added mass moment (𝐽𝑧𝑧) 0.009268
Yaw mass moment of inertia (𝐼𝑧𝑧) 0.011432
Mass of the vessel (𝑚) 0.182280

2.2 shows the non-dimensionalization factors for various quantities, and the resulting

non-dimensional equations of motion are given by 2.4.

(𝑚′ + 𝑚′𝑥) ¤𝑢′ − 𝑚′𝑣′𝑟′ − 𝑚′𝑥′𝐺𝑟
′2 = 𝑋′

(𝑚′ + 𝑚′𝑦) ¤𝑣′ + 𝑚′𝑥′𝐺 ¤𝑟
′ + 𝑚′𝑢′𝑟′ = 𝑌 ′

(𝐼′𝑧𝑧 + 𝐽′𝑧𝑧) ¤𝑟′ + 𝑚′𝑥′𝐺 ¤𝑣
′ + 𝑚′𝑥′𝐺𝑢

′𝑟′ = 𝑁′

(2.4)

In Table 2.2, a non-dimensional factor is specified and denoted by (.)′. However, in the

following sections, to simplify the notation, we will avoid using the prime symbol and

assume that all quantities are already non-dimensionalized based on the factors presented

in Table 2.2. Additionally, Table 2.3 provides the non-dimensional mass and added mass

terms.

The non-dimensional external forces and moments can be decomposed into components

14



due to hull, propeller and rudder as shown in (2.5).

𝑋 = 𝑋𝐻 + 𝑋𝑅 + 𝑋𝑃

𝑌 = 𝑌𝐻 + 𝑌𝑅

𝑁 = 𝑁𝐻 + 𝑁𝑅

(2.5)

where the subscripts 𝐻, 𝑅 and 𝑃 represent the hull, rudder, and propeller effects

respectively.

2.1 FORCES DUE TO HULL

In (2.6), the forces and moments exerted on the hull by the surrounding fluid can be

expressed as a Taylor series with respect to the variables 𝑢, 𝛽, and 𝑟 . The hydrodynamic

coefficients used for the KCS vessel in (2.6), which are non-dimensional, were obtained

from Yoshimura and Masumoto (2012) and are presented in Table 2.4. Alternatively,

these coefficients can also be estimated by applying system identification methods to data

collected from experiments conducted with free-running ship models, as demonstrated

by previous studies (Vĳay and Somayajula, 2022; Deogaonkar et al., 2023).

𝑋𝐻 = 𝑋0𝑢
2 + 𝑋𝛽𝛽𝛽2 + (𝑋𝛽𝑟 − 𝑚𝑦)𝛽𝑟 + 𝑋𝑟𝑟𝑟2 + 𝑋𝛽𝛽𝛽𝛽𝛽4

𝑌𝐻 = 𝑌𝛽𝛽 + (𝑌𝑟 − 𝑚𝑥)𝑟 + 𝑌𝛽𝛽𝛽𝛽3 + 𝑌𝛽𝛽𝑟𝛽2𝑟 + 𝑌𝛽𝑟𝑟𝛽𝑟2 + 𝑌𝑟𝑟𝑟𝑟3

𝑁𝐻 = 𝑁𝛽𝛽 + 𝑁𝑟𝑟 + 𝑁𝛽𝛽𝛽𝛽3 + 𝑁𝛽𝛽𝑟𝛽2𝑟 + 𝑁𝛽𝑟𝑟𝛽𝑟2 + 𝑁𝑟𝑟𝑟𝑟3

(2.6)

2.2 FORCES DUE TO PROPELLER

The non-dimensional propeller thrust acting in the surge direction can be calculated

using (2.7)

𝑋𝑝 = 2(1 − 𝑡)𝐾𝑇𝐷 𝑝
4𝑛2 𝐿

𝑑𝑒𝑚
(2.7)
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Table 2.4: Ship hydrodynamic coefficients

Parameter Non-dimensional value
𝑋0 -0.0167
𝑋𝛽𝛽 -0.0549

𝑋𝛽𝑟 − 𝑚𝑦 -0.1084
𝑋𝑟𝑟 -0.0120
𝑋𝛽𝛽𝛽𝛽 -0.0417
𝑌𝛽 0.2252

𝑌𝑟 − 𝑚𝑥 0.0398
𝑌𝛽𝛽𝛽 1.7179
𝑌𝛽𝛽𝑟 -0.4832
𝑌𝛽𝑟𝑟 0.8341
𝑌𝑟𝑟𝑟 -0.0050
𝑁𝛽 0.1111
𝑁𝑟 -0.0465
𝑁𝛽𝛽𝛽 0.1752
𝑁𝛽𝛽𝑟 -0.6168
𝑁𝛽𝑟𝑟 0.0512
𝑁𝑟𝑟𝑟 -0.0387

The (2.8) provides the value of the propeller thrust coefficient 𝐾𝑇 , where 𝐷 𝑝 represents

the propeller diameter, 𝑛 is the propeller revolution rate, and 𝑡 is the thrust deduction

factor. The purpose of including the thrust deduction factor is to account for the additional

resistance experienced when the propeller operates behind the hull, as opposed to bare

hull resistance. Curve fitting of the propeller open water test data is used to determine

the value of 𝐾𝑇 for the KCS vessel.

𝐾𝑇 = 𝑎0 + 𝑎1𝐽 + 𝑎2𝐽
2 (2.8)

Here 𝐽 represents the advance coefficient and is given by (2.9)

𝐽 =
𝑢(1 − 𝑤)
𝑛𝐷 𝑝

(2.9)

where 𝑤 represents the effective wake fraction. The effective wake fraction 𝑤 accounts

for the reduction in inflow fluid velocity to the propeller when operating in the wake of
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Table 2.5: Propeller parameters

Parameter Non-dimensional value
𝑡 0.207
𝐷 𝑝 0.03435
𝑛 35.86
𝑤 0.355
𝑎0 0.5228
𝑎1 -0.4390
𝑎2 -0.0609

the hull. The values of propeller parameters are specified in Table 2.5.

2.3 FORCES DUE TO RUDDER

The surge and sway forces and the yaw moment due to the rudder are given by

𝑋𝑅 = −(1 − 𝑡𝑅)𝐹𝑁 𝑠𝑖𝑛𝛿

𝑌𝑅 = −(1 + 𝑎𝐻)𝐹𝑁 cos 𝛿

𝑁𝑅 = −(𝑥𝑅 + 𝑎𝐻𝑥𝐻)𝐹𝑁 cos 𝛿

(2.10)

where 𝛿 represents the instantaneous rudder angle; 𝑡𝑅, which is the steering resistance

deduction factor; 𝑥𝑅, which denotes the non-dimensional location of the rudder relative

to midship; and 𝑥𝐻 , which refers to the non-dimensional position of the point where

additional lateral force is applied. The values of these parameters have been obtained

from a prior study by Yoshimura and Masumoto (2012) and are presented in Table2.6.

The non-dimensional rudder normal force, 𝐹𝑁 , can be calculated using (2.11).

𝐹𝑁 =
𝐴𝑅

𝐿𝑑𝑒𝑚
𝑓𝛼𝑈

2
𝑅 sin𝛼𝑅

𝛼𝑅 = 𝛿 − tan−1 −𝑣𝑅
𝑢𝑅

(2.11)

where 𝐴𝑅 is the rudder area,𝑈𝑅 is the non-dimensional rudder inflow velocity and 𝑓𝛼 is
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the gradient of rudder lift coefficients. 𝑓𝛼 can be approximated as a function of rudder

aspect ratio (𝜆), as shown in Eq. 2.12.

𝑓𝛼 =
6.13𝜆
(2.25 + 𝜆) (2.12)

𝑣𝑅 and 𝑢𝑅 in (2.11) are the lateral and in-line velocity components (𝑈𝑅 =

√︃
𝑣2
𝑅
+ 𝑢2

𝑅
) and

can be computed as shown in (2.13).

𝑢𝑅 = 𝜀(1 − 𝑤) ×

√√√√√
𝜂
©­«1 + 𝜅 ©­«

√︄(
1 + 8

𝐾𝑇

𝜋𝐽2

)
− 1ª®¬ª®¬

2

+ (1 − 𝜂)

𝑣𝑅 = 𝛾𝑅 (𝑣 + 𝑟𝑙𝑅)

(2.13)

In (2.13), the flow straightening factor to yaw-rate correction is denoted by 𝑙𝑅, while

𝛾𝑅 represents the flow straightening factor of the hull. The values for these constants

are provided in Table 2.6. The ratio of the propeller diameter to the rudder height is

denoted by 𝜂 and can be computed as 𝜂 =
𝐷 𝑝

ℎ𝑅
. The constants 𝜀 and 𝜅 are obtained from

experiments conducted by Yoshimura and Masumoto (2012).

2.4 RUDDER ANGLE VARIATION

In real-world situations, it is not possible to change the rudder angle instantaneously due

to the high rudder rate ¤𝛿 it would require. This research employs a first-order equation,

as presented in (2.14), to regulate the actual rudder angle 𝛿 which is influenced by the

commanded rudder angle 𝛿𝑐. The commanded rudder angle can be changed abruptly,

but the actual rudder angle 𝛿 evolves slowly as per the first-order equation. By reducing

the value of 𝑇𝑅, the response time can be accelerated.

𝑇𝑅 ¤𝛿 + 𝛿 = 𝛿𝑐 (2.14)
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Table 2.6: Rudder force parameters

Parameter Value
𝐴𝑅

𝐿𝑑𝑒𝑚
0.0182

𝑡𝑅 0.258
𝑎𝐻 0.361
𝑥𝐻 -0.436
𝑥𝑅 -0.5
𝑙𝑅 -0.755

𝛾𝑅 (starboard) 0.492
𝛾𝑅 (port) 0.338

𝜅 0.633
𝜀 0.956
𝜆 2.164
𝜂 0.7979

In addition, the rudder rate ¤𝛿 is also saturated at ¤𝛿𝑚𝑎𝑥 . So the rudder rate is given by:

¤𝛿 =



𝛿𝑐−𝛿
𝑇𝑅

if | 𝛿𝑐−𝛿
𝑇𝑅
| ≤ ¤𝛿𝑚𝑎𝑥

¤𝛿𝑚𝑎𝑥 if 𝛿𝑐−𝛿
𝑇𝑅

> ¤𝛿𝑚𝑎𝑥

− ¤𝛿𝑚𝑎𝑥 if 𝛿𝑐−𝛿
𝑇𝑅

< − ¤𝛿𝑚𝑎𝑥

(2.15)

In this study, the non-dimensional rudder time-constant 𝑇𝑅 is taken as 0.1 and ¤𝛿𝑚𝑎𝑥 is

chosen as 5° per second (Fossen (2011)) for the full-scale ship.
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CHAPTER 3

REINFORCEMENT LEARNING ALGORITHMS

3.1 INTRODUCTION

RL is a type of machine learning where agents learn to make optimal decisions by

interacting with an environment to accumulate rewards. Through trial and error, the

agent learns which actions to take in a particular state to maximize rewards. This

learning environment is known as a Markov decision process (MDP), which is suitable

for representing ship dynamics. The agent’s policy, denoted by 𝜋(𝑠), governs the action

taken in a state 𝑠. An episode is terminated either when a maximum number of time steps

is reached or if any termination condition is satisfied. The agent’s goal is to maximize

the cumulative reward obtained in each episode, known as the episode returns.

𝑅 =

𝑇∑︁
𝑡=0

𝑟𝑡 (3.1)

In RL, the value function 𝑉 (𝑠) is defined as the expected sum of discounted rewards

obtained from a given state, as shown in (3.2). Here 𝛾 ∈ [0, 1] denotes the discount

factor, that adjust the weightage given to rewards obtained in future time steps.

𝑉 (𝑠) = E𝜋
[
𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ... + 𝛾𝑇−𝑡𝑟𝑇 | 𝑠𝑡 = 𝑠

]
(3.2)

Q-learning is a well-known reinforcement learning (RL) algorithm that estimates the

value of each possible action at a particular state known as the Q-value. The Q-value for

a state-action pair is represented as 𝑄(𝑠, 𝑎), and corresponds to the expected discounted

sum of rewards that the agent can receive by taking the action 𝑎 from the state 𝑠. The

Q-value for a state-action pair can be computed using the Bellman equation, which



sums up the reward obtained by executing action 𝑎 at state 𝑠 and the discounted rewards

obtained by choosing optimal actions at the subsequent time steps, as shown in (3.3).

Expectation refers to the predicted value of rewards, considering available information. It

involves a calculation that combines each potential value of the reward with its associated

probability density function through summation. By estimating the expected value of

rewards, RL agents can make informed decisions and update their policies to maximize

cumulative rewards over time. The calculation of expectations plays a fundamental role

in modeling and optimizing the RL process. Therefore, The agent improves its Q-value

estimation through experience gained from multiple trials.

𝑄(𝑠, 𝑎) = E𝜋 [𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ...𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

𝑄(𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾max
𝑎′
𝑄(𝑠′, 𝑎′)

(3.3)

3.2 DEEP Q-LEARNING

Q-Learning has a significant limitation that it can only be used when both the action

space and state space are discrete, which is not the case in many real-world scenarios.

Although a naive approach might be to discretize the state space and action space, a fine

discretization would require a large number of Q-values to be stored and is many times

infeasible. To address this issue, function approximators can be used to substitute the

Q-table used in Q-learning. Artificial neural networks (ANNs) are a popular choice

for function approximators due to their excellent representational capabilities. This has

given rise to a new class of RL algorithms known as deep reinforcement learning (DRL).

In deep Q-learning, the process involves inputting the observation spaces into a Q-

network, which then estimates the Q-values for each possible action. Unlike traditional

Q-learning, deep Q-learning can handle continuous state spaces. The Q-value is denoted

as 𝑄(𝑠, 𝑎, 𝜃), where 𝜃 represents the network’s parameters. During training, an 𝜖-greedy

policy is typically employed to encourage exploration rather than always selecting the
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Figure 3.1: DQN algorithm flowchart

action with the highest Q-value. The 𝜖-greedy policy is given by Equation (3.4), where

the parameter 𝜖 determines the probability of the agent choosing a random action. In this

research, the value of 𝜖 starts at 1 and gradually decreases linearly to 0 after a specified

number of episodes (which is a hyperparameter in this work).

𝜋(𝑠) =


arg max𝑎 𝑄(𝑠, 𝑎)with a probability of 1 − 𝜖

random action with a probability of 𝜖
(3.4)

The network parameters are updated frequently to improve the Q-values output by the

network, and this in turn allows the policy to converge faster. Network parameters are

updated by backpropagation with the help of an optimizer that tries to minimize the loss

function given by (3.5).

𝐿 (𝜃) = E𝑠,𝑎,𝑟,𝑠′
[
(𝑦 −𝑄(𝑠, 𝑎; 𝜃))2

]
(3.5)

Here the notation E𝑠,𝑎,𝑟,𝑠′ [.] represents the expected value across all feasible state
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transitions (𝑠, 𝑎, 𝑟, 𝑠′). A state transition (𝑠, 𝑎, 𝑟, 𝑠′) indicates a movement of the agent

from state 𝑠 to 𝑠′ by executing an action 𝑎 and earning a reward 𝑟 . It is worth noting that

𝑦 is the summation of the obtained reward 𝑟 (𝑠, 𝑎) during the transition from 𝑠 to 𝑠′ and

the anticipated reward from that point onwards, assuming that the agent selects the action

with the maximum Q-value, as represented in (3.6). The second term in (3.6) denotes

the anticipated future rewards.

𝑦 = 𝑟 (𝑠, 𝑎) + 𝛾max
𝑎′
𝑄(𝑠′, 𝑎′; 𝜃′) (3.6)

The TD (temporal difference) loss is defined as [𝑦 −𝑄(𝑠, 𝑎; 𝜃)]. In (3.6), 𝜃′ refers to the

parameters of the target network. The target value, denoted as 𝑦, is typically determined

using a target network in DQN, which is essentially a copy of the Q-network but updated

at a slower rate with a soft update factor 𝜏 to promote stable learning. To update the

Q-network, a set of transitions are randomly sampled from the replay buffer and the TD

loss is computed for these samples according to (3.5), after which the network is updated

through backpropagation.

The DQN algorithm used in this study is expressed in a condensed form in Algorithm 1.

3.3 DEEP DETERMINISTIC POLICY GRADIENT

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) is a DRL algorithm

that uses the actor-critic framework to extend Q-learning to a continuous action space.

The policy and Q-value functions are both estimated by neural networks, namely the

actor and critic networks respectively. In policy gradient methods, the actor network

directly represents the agent’s policy. The actor network takes as input the current state

and outputs the action based on the policy encoded by the network. The critic network

takes as input both the state and action to predict the Q-value. DDPG also makes use of

target networks like the DQN algorithm.
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Algorithm 1 DQN algorithm
1: Initialise Q-network and target network with random parameters 𝜃0 and 𝜃0′

2: Initialise an empty experience replay buffer D
3: for Episode = 1,2...N do
4: for t=1,2...T do
5: Choose action 𝑎𝑡 as per (3.4)
6: Obtain reward 𝑟𝑡 and next state 𝑠𝑡+1
7: Add transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) to replay buffer D
8: End episode if termination conditions are met
9: if time step % update frequency ==0 then

10: Sample 𝑀 random transitions from D
11: Compute loss as below using 𝑦𝑖 from (3.6) :
12: 𝐿 (𝜃) = ∑𝑀

𝑖=0
1
𝑀
[𝑦𝑖 −𝑄(𝑠𝑖, 𝑎𝑖; 𝜃)]2

13: Update the network using the computed loss
14: Update target network as: 𝜃′ = 𝜏𝜃 + (1 − 𝜏)𝜃′
15: end if
16: end for
17: end for

In DDPG, noise is added to the action to aid the agent to explore more during training.

The behavioural policy can be denoted as:

𝑎𝑡 = 𝜇 (s𝑡) + N𝑡 (3.7)

Where N𝑡 is the noise added to the policy and 𝜇(𝑠𝑡) is the current policy. Noise is usually

added through a correlated Ornstein-Uhlenbeck process or an uncorrelated Gaussian

distribution.

The critic network uses squared TD error as its loss function. The actor-network uses the

policy gradient loss which is given below. In (3.8), 𝜃𝑄 denotes the parameters of the

critic network and 𝜃𝜇 denotes the parameters of the actor-network.

∇𝜃𝜇𝐽 =
[
∇𝑎𝑄

(
𝑠, 𝑎 | 𝜃𝑄

)���
𝑠=𝑠𝑡 ,𝑎=𝜇(𝑠𝑡 )

∇𝜃𝜇𝜇 (𝑠 | 𝜃𝜇)
����
𝑠=𝑠𝑡

]
(3.8)

The DDPG algorithm is specified below in Algorithm 2
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Algorithm 2 DDPG algorithm
1: Initialise actor and critic networks and target networks with random parameters 𝜃𝜇

and 𝜃𝑄
2: Initialise target networks with parameters 𝜃𝑄′ ← 𝜃𝑄 , 𝜃𝜇

′ ← 𝜃𝜇

3: Initialise an empty experience replay buffer D
4: for Episode = 1,2...N do
5: for t=1,2...T do
6: Choose action 𝑎𝑡 according to (3.7)
7: Obtain reward 𝑟𝑡 and next state 𝑠𝑡+1
8: Add transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) to replay buffer D
9: End episode if termination conditions are met

10: Sample 𝑀 random transitions from D
11: Update the critic network using the loss:
12: 𝐿 = 1

𝑁

∑
𝑖

(
𝑦𝑖 −𝑄

(
𝑠𝑖, 𝑎𝑖 | 𝜃𝑄

) )2 where
13: 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′

(
𝑠𝑖+1, 𝜇′

(
𝑠𝑖+1 | 𝜃𝜇

′ ) | 𝜃𝑄′ )
14: Update the actor-network:
15: ∇𝜃𝜇𝐽 ≈ 1

𝑁

∑
𝑖 ∇𝑎𝑄

(
𝑠, 𝑎 | 𝜃𝑄

) ��
𝑠=𝑠𝑖 ,𝑎=𝜇(𝑠𝑖) ∇𝜃𝜇𝜇 (𝑠 | 𝜃

𝜇)
���
𝑠𝑖

16: if time step % target update frequency ==0 then
17: Update target networks:
18: 𝜃𝑄

′ ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄
19: 𝜃𝜇

′ ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

20: end if
21: end for
22: end for
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3.4 PROXIMAL POLICY OPTIMIZATION

Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm is an actor-

critic, on-policy RL algorithm that is based on trust region policy optimization (TRPO,

Schulman et al. (2015)). It is an on-policy algorithm, meaning the agent’s current policy

and the behavioural policy which is used to collect data for training are the same. Hence

it does not make use of a replay buffer, unlike the DQN and DDPG algorithms. PPO

uses a stochastic policy and trains it in an on-policy way. Additionally, an entropy bonus

is added to improve exploration. In an iteration, a number of transitions are collected

using the same policy before updating the networks.

It reduces computation from TRPO by introducing a constrained surrogate objective

function as the actor loss function. There are variants of this surrogate objective, KL

penalty and clipped ratio objective functions. The clipped ratio surrogate objective is

commonly used and it is given by:

𝑟𝑡 (𝜃) =
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 | 𝑠𝑡)

𝐿𝐶𝐿𝐼𝑃 (𝜃) = Ê[min(𝑟𝑡 (𝜃) 𝐴̂𝑡 , clip(𝑟𝑡 (𝜃), 1 − 𝜀, 1 + 𝜀) 𝐴̂𝑡]
(3.9)

In (3.9), 𝜋𝜃 (𝑎𝑡 | 𝑠𝑡) is the probability of action 𝑎𝑡 under the current policy, 𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 | 𝑠𝑡)

is the probability with the old policy and 𝜖 is the clip ratio. 𝐴̂𝑡 is the estimated advantage

at time step 𝑡. In RL, the advantage is defined as the difference between the Q-value

𝑄(𝑠, 𝑎) and the value function 𝑉 (𝑠). The advantage is usually computed using the

Generalized advantage estimation (GAE) method. The value network loss is the mean

squared error between the return and the value function, as shown in (3.11).

𝐴̂(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) −𝑉 (𝑠)

𝐴̂(𝑠, 𝑎) = 𝑟 + 𝛾𝑉 (𝑠′) −𝑉 (𝑠)
(3.10)
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𝐿𝑉 (𝜙) = −
𝑁∑︁
𝑖=1

∑︁
𝑡

(∑︁
𝑡′>𝑡

𝛾𝑡
′−𝑡𝑟 𝑡

′
𝑖 −𝑉𝜙

(
𝑠𝑡𝑖
))2

(3.11)

The PPO algorithm is described in detail below in Algorithm 3

Algorithm 3 PPO algorithm
1: Initialise actor network 𝜋𝜃 and value network 𝑉𝜙
2: for Iteration = 1,2...M do
3: for Episode = 1,2...N do
4: for t=1,2...T do
5: Choose action 𝑎𝑡 according to 𝜋𝜃
6: End episode if termination conditions are met
7: end for
8: Estimate advantages 𝐴̂1, 𝐴̂2... 𝐴̂𝑇 using 𝑉𝜙
9: end for

10: for Epochs=1,2...K do
11: Update the actor using surrogate objective 𝐿𝐶𝐿𝐼𝑃 according to (3.9)
12: Update value network using critic loss given by (3.11)
13: end for
14: end for
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CHAPTER 4

RL-FRAMEWORK

This chapter discusses the details of the RL framework applied to ship navigation and

obstacle avoidance. An observation state of the vessel is provided as input to the RL agent

at every time step based on which the agent takes actions to maneuver the ship towards

the goal position. The observation states and rewards have to be designed appropriately

to achieve the desired outcome.

Tensorflow-agents, the official DRL implementation from the prominent machine learning

library Tensorflow (Abadi et al., 2015), is used in this study to efficiently train and test

DRL agents with several algorithms.

This chapter is divided into four sections. First section discusses the 3-action state-

based DQN controller and its comparison with the traditional PD controller with ILOS

guidance system in simulations and experiments for waypoint tracking. The second

section emphasizes on comparison between different DRL controllers, namely DQN

(5-action state), PPO and DDPG in various manoeuvres and in presence of external

disturbances like winds for waypoint tracking. The third section discusses about the

DQN and DDPG-based controllers on static obstacle avoidance. Finally, the last section

talks about the DQN and DDPG controller with dynamic obstacle avoidance and using a

hybrid network to maneuver through calm water.

4.1 WAYPOINT TRACKING

In this section, DRL based controller is trained for waypoint tracking and path following.

Fig. 4.1 shows the schematic representation of the problem statement for waypoint

tracking.



4.1.1 Observation States

At each time step, the agent receives an observation state vector that reflects its current

state and uses this information to make a decision about which action to take. This

observation state vector comprises four variables: cross-track error (𝑑𝑐), course angle

error (𝜒𝑒), yaw rate(𝑟), and distance to destination (𝑑𝑤𝑝).

4.1.1.1 Cross-track error

The coordinates of the initial and goal waypoints are denoted by (𝑥𝑖, 𝑦𝑖) and (𝑥𝑔, 𝑦𝑔)

respectively, while the ship’s coordinates at an intermediate time step are denoted by

(𝑥, 𝑦). The perpendicular distance of the ship’s current coordinates from the line joining

the initial and destination waypoints is defined as the cross-track error (𝑑𝑐). To compute

the cross-track error, two vectors 𝑣̂1 and ®𝑣2 are defined as illustrated in Fig. 4.1. The

vector 𝑣̂1 represents a unit vector in the direction of the line joining the initial and

destination waypoints, while ®𝑣2 points from the current location of the ship towards the

goal. The cross-track error 𝑑𝑐 can be obtained as the cross product of these two vectors,

𝑣̂1 and ®𝑣2.

®𝑣1 = (𝑥𝑔 − 𝑥𝑖)𝑖 + (𝑦𝑔 − 𝑦𝑖) 𝑗

𝑣̂1 =
®𝑣1

|®𝑣1 |

®𝑣2 = (𝑥𝑔 − 𝑥)𝑖 + (𝑦𝑔 − 𝑦) 𝑗

𝑑𝑐 = ®𝑣2 × 𝑣̂1

(4.1)

4.1.1.2 Course-angle error

The course angle error refers to the angle between the ship’s instantaneous velocity

and the desired heading, and it is calculated using the formula given in (4.2). The

calculation involves determining the smallest signed angle (ssa) (Fossen, 1999) between

the difference in the ship’s velocity direction and the direction towards the goal waypoint.
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X
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Initial Waypoint

Figure 4.1: Depiction of the waypoint tracking problem

𝜒𝑒 = 𝑠𝑠𝑎

(
𝑎𝑟𝑐𝑡𝑎𝑛2( ®𝑈) − 𝑎𝑟𝑐𝑡𝑎𝑛2( ®𝑣2)

)
(4.2)

Here ®𝑈 is the ship’s instantaneous velocity represented in global coordinates and can be

calculated as shown in (4.3).

®𝑈 = ¤𝑥®𝑖 + ¤𝑦 ®𝑗

¤𝑥 = 𝑢 cos(𝜓) − 𝑣 sin(𝜓)

¤𝑦 = 𝑢 sin(𝜓) + 𝑣 cos(𝜓)

(4.3)
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4.1.1.3 Distance to destination

The distance to the destination waypoint 𝑑𝑤𝑝 is defined as shown in (4.4).

𝑑𝑤𝑝 =

√︃
(𝑥𝑔 − 𝑥)2 + (𝑦𝑔 − 𝑦)2 (4.4)

4.1.1.4 Yaw-rate

The yaw-rate 𝑟 is defined as the vessel’s rotational velocity in the BCS’s yaw direction.

4.1.2 Action Space

The action available to the agent at each time step is the commanded rudder angle 𝛿𝑐.

The relationship between 𝛿𝑐 and the actual rudder angle 𝛿 can be found in (2.15). It is

important to note that the agent is only responsible for controlling the commanded rudder

angle, while the actual rudder angle 𝛿 continues to change gradually in accordance with

(2.14) and (2.15).

4.1.3 Reward Structure

In an RL system, the selection of appropriate reward functions can significantly impact

its decision-making process. In this particular scenario, the reward functions were

specifically designed to consider the cross-track error, course angle, and distance to the

destination waypoint. Specifically, the reward function associated with the cross-track

error (𝑑𝑐) is given by:

𝑟1 = 2 exp
( −𝑑2

𝑐

12.5

)
− 1 (4.5)

The function is chosen such that at each time step, the reward lies between −1 and 1. In

addition, the exponential coefficient of this function is determined in such a way that if

the cross-track error (𝑑𝑐) exceeds a threshold of 3, the corresponding reward becomes

negative. The reward associated with the error in course angle (𝜒𝑒) is given by:
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Figure 4.2: Cross track reward

Figure 4.3: Course angle reward

𝑟2 = 1.3 exp (−10 |𝜒𝑒 |) − 0.3 (4.6)

The selection of the reward function is such that it maintains the reward value within the

range of −0.3 to 1 at every time step. The coefficient of the exponential term is carefully

determined in such a way that for course angle errors greater than 8.50, the reward

associated with it becomes negative. It is noteworthy that the exponential function has

the cross-track error 𝑑2
𝑐 as its argument and |𝜒𝑒 | for the course angle error, resulting in

the agent giving more importance to reducing the cross-track error than the course angle

error. This strategy is employed to ensure that the agent prioritizes reducing cross-track

33



error over course angle error in each time step.

It is important to mention that in order to prevent the agent from loitering in the

environment and to encourage it to quickly reach the goal, the total reward obtained

during training should be negative. For this purpose, a new reward based on the distance

to the destination waypoint (𝑑𝑤𝑝) is introduced and is given by

𝑟3 =
−𝑑𝑤𝑝

4
(4.7)

By setting the coefficient to 1/4 in the reward function, a negative reward is obtained

for the entire episode. This approach ensures that when the agent is far from the goal

waypoint (i.e., farther than 4𝐿), it prioritizes reducing the distance to the goal over

maintaining the course. The value of 4 is chosen based on the observation that the total

episode reward is negative, and the combination of the reward structure for 𝑟1 and 𝑟2

with the factor of 4 results in a trajectory that gradually decreases course angle error

and cross-track error as the distance decreases. Alternative values for the coefficient are

possible, but they would lead to a different rate of decrease in course angle error and

cross-track error with distance. For instance, a reward of −𝑑𝑤𝑝/8 with equal weights for

𝑟1 and 𝑟2 would give more weight to the cross-track error than the distance to the goal

when the vessel is 8𝐿 away from the goal waypoint. However, by setting the reward to

−𝑑𝑤𝑝/4, this transition point shifts to 4𝐿 away from the goal waypoint.

The total reward obtained by the agent throughout an episode, also known as episode

return, can be computed by summing up the rewards obtained by the agent at each time

step. Here, 𝑟𝑚 denotes the reward obtained by the agent at time step 𝑚, then the episode

return can be expressed as the sum of all rewards accumulated by the agent from the
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beginning to the end of the episode, as shown in (4.8).

𝑟𝑚 = 𝑟1 + 𝑟2 + 𝑟3

𝑅 =

𝑛∑︁
𝑚=0

𝑟𝑚

(4.8)

In (4.8), 𝑟𝑚 is the reward at time step 𝑚 and 𝑅 is the episode return, which is the

cumulative sum of rewards obtained at each time step.

4.1.4 Training Process

At the start of each episode, the ship’s position is set to the origin, oriented towards

the positive X-axis (𝜓 = 0) of the GCS, and with a velocity matching the design speed.

There is no initial acceleration in any of the 3-DOF and no initial velocity in the sway

and yaw motions.

During training, the initial waypoint, non-dimensional speed, and heading are kept fixed

at (0, 0), 1, and 0°, respectively, while the destination is randomly selected for each

episode. The radial distance of the destination waypoint from the initial waypoint is

uniformly sampled between 8𝐿 to 28𝐿, and the direction is uniformly sampled between 0

and 2𝜋. A scatter plot of 1000 randomly sampled goal coordinates is shown in Fig. 4.4.

4.1.5 Episode termination

During the training process, the objective of the agent is to maximize the cumulative

reward, which drives the ship towards the designated destination. To ensure successful

completion of an episode, a tolerance level of 0.5L around the target waypoint is

established as a positive termination condition. Once the ship enters this region, the

episode is considered successful, and a terminal reward of +100 is granted. However,

an untrained agent may not be able to reach the destination point, so specific criteria

must be established to determine if the agent is still capable of reaching the goal or if the

episode should be terminated to avoid aimless paths. The negative termination condition
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Figure 4.4: Scatter plot of randomly generated destination waypoints for training
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is defined as follows:

®𝑣1 · ®𝑣2 < 0 and ®𝑈 · ®𝑣2 < 0

The first condition for termination only relies on the current position of the ship and

is independent of its velocity. Fig. 4.5 illustrates that the angle between ®𝑣1 and ®𝑣2

exceeds 𝜋/2 as the dot product becomes negative, and the ship crosses the line that is

perpendicular to the line connecting the initial and final waypoints. The second condition

considers the direction of the ship’s velocity vector. The episode is not concluded even if

the ship has passed the destination point, provided that its velocity still points towards

the destination point.

Y

X
®𝑈®𝑣2

𝑣1

Initial point

destination

Figure 4.5: Visualizing the termination condition

4.2 STATIC OBSTACLE AVOIDANCE

In this section, DRL based controller is trained for static obstacle avoidance. Fig. 4.6

shows the schematic representation of the problem statement for static obstacle avoidance.

4.2.1 Observation States

The observation state space formulated for this problem contains 7 variables, including

the 4 variables already defined in Sec. 4.1.1. Three new variables are defined for the
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obstacle avoidance case, distance to an obstacle (𝑑𝑜𝑏𝑠), angle to the obstacle (𝜒𝑜𝑏𝑠) and

size of obstacle(𝑆𝑜𝑏𝑠).

4.2.1.1 Distance to obstacle

It is defined as the distance to the obstacle from the vessel’s current position.

𝑑𝑜𝑏𝑠 =

√︃
(𝑥𝑜𝑏𝑠 − 𝑥)2 + (𝑦𝑜𝑏𝑠 − 𝑦)2 (4.9)

4.2.1.2 Angle to obstacle

It is defined as the smallest signed angle of the angle between the velocity vector and the

vector pointing from the ship to the position of the obstacle.

𝜒𝑜𝑏𝑠 = 𝑠𝑠𝑎

(
𝑎𝑟𝑐𝑡𝑎𝑛2( ®𝑈) − 𝑎𝑟𝑐𝑡𝑎𝑛2( ®𝑣4)

)
(4.10)

4.2.1.3 Size of the obstacle

In this study, the radius of the obstacle is assumed to lie between 0 to 1L.

The extended observation space is given by: [𝑑𝑐, 𝜒𝑒, 𝑑𝑤𝑝, 𝑟, 𝑑𝑜𝑏𝑠, 𝜒𝑜𝑏𝑠, 𝑆𝑜𝑏𝑠]

4.2.2 Action Space

The commanded rudder angle (𝛿𝑐) and the actual rudder angle (𝛿) vary smoothly as

governed by (2.14) and (2.15).

4.2.3 Reward Structure

The reward structure is the same as described in Sec. 4.1.3

4.2.4 Training Process

In each episode, the ship begins at the origin (initial waypoint), oriented about the

positive X-axis of the GCS (𝜓 = 0) and with an initial velocity of design speed in the

surge direction. The ship has no initial acceleration in three degrees of freedom and no
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𝜒𝑜𝑏𝑠 ®𝑈
𝑑𝑜𝑏𝑠

−→𝑣4

−→𝑣1

Destination waypoint

Initial waypoint

Figure 4.6: Depiction of the static obstacle avoidance problem

initial velocity in the sway and yaw motions.

(a) (b)

Figure 4.7: Depiction of training for static obstacle avoidance

The radial distance between the destination and the initial waypoint is sampled from

a uniform distribution ranging from 8L to 18L. 60% of the training time, the obstacle

is randomly placed within 0.25 to 0.75 times the destination waypoint from the initial

waypoint along the line joining the initial and destination waypoint as shown in Fig. 4.7a.
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In contrast, in the remaining 40% of the cases, the obstacle is placed randomly on a circle

with a radius within 0.25 to 0.75 times the distance between the destination waypoint and

the initial waypoint for the static obstacle (Fig. 4.7b). Note that in this case, the obstacle

need not be on the line joining the waypoints and might not even be in the path of the

vessel. This biased nature of the obstacle’s position is included to let our agent observe

the obstacles a sufficient number of times and know how to perform when the obstacle is

not in the path.

4.2.5 Episode Termination

The termination conditions for the training remain unchanged as described in section

4.1.5. An additional termination condition is implemented, which is when the agent

collides with an obstacle. In such cases, a penalty of −100 is assigned to the agent. The

condition necessary for the agent to learn to avoid obstacles is provided in (4.11).

𝑅1 + destination reward > 𝑅2 + collision reward (4.11)

where 𝑅1 is the total reward accumulated by the agent till it reaches to the destination

while 𝑅2 is the total reward accumulated by the agent till it collides with the obstacle as

given in (4.8).

Although the collision penalty can be set to a high negative value, it has been observed

during the training process that the ship takes longer routes and experiences a higher

cross-track error in order to avoid obstacles. Furthermore, the sum of rewards (𝑟1,

𝑟2 and 𝑟3) is negative, indicating that the agent seeks to end the episode quickly in order

to maximize its reward. To satisfy the constraint outlined in (4.11), the reward for

reaching the destination is reduced to +20. (4.12) illustrates the condition for collision.

𝑑𝑜𝑏𝑠 − 𝑆𝑜𝑏𝑠 ≤ 0.5𝐿 (4.12)

4.3 DYNAMIC OBSTACLE AVOIDANCE

In this section, DRL based controller is trained for dynamic obstacle avoidance.
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4.3.1 Measure of Collision Risk

To ensure safe autonomous navigation in the presence of multiple obstacles, it is important

to quantitatively assess Collision Risk (CR) and determine the appropriate avoidance

point. The Closest Point Approach (CPA) method is commonly used to evaluate CR

by determining the closest point between the ship and obstacle while maintaining their

current speed and direction. The distance between the ship and obstacle at the CPA is

known as the Distance to the CPA (DCPA), while the time taken by the obstacle to reach

the CPA is known as the Time to the CPA (TCPA), as illustrated in Fig. 4.8. In essence,

the DCPA indicates the severity of a potential collision, while the TCPA indicates the

urgency of the situation.

In previous studies, quantitative assessment of collision risk (CR) has been proposed by

utilizing a combination of the closest point of approach (CPA) and time to CPA (TCPA),

as presented by Mou et al. (2010) and Zhen et al. (2017). In this research, CPA was

utilized for assessing the ship and obstacle’s CR in a quantitative manner. The figures

illustrating the concepts of CPA, TCPA, and distance to CPA (DCPA) can be found in

Fig. 4.8, and the calculation of TCPA and DCPA can be performed by utilizing 4.13.

𝐷𝐶𝑃𝐴 = 𝑅 sin(𝜒𝑅 − 𝜒𝑜𝑠 − 𝜃𝑇 − 𝜋)

𝑇𝐶𝑃𝐴 =
𝑅

𝑉𝑅
cos(𝜒𝑅 − 𝜒𝑜𝑠 − 𝜃𝑇 − 𝜋)

(4.13)

where, 𝑅 represents the distance between a ship and an obstacle, while 𝑉𝑅 and 𝜒𝑅 denote

the relative speed and course angle between them. Additionally, 𝜒𝑂𝑆 represents the

course of the ship, 𝜒𝑇𝑆 represents the course of the obstacle while 𝜃𝑇 is the bearing of

the obstacle relative to the ship.

Various studies have proposed different methods for the quantitative evaluation of collision

risk using TCPA and DCPA. For instance, a relatively simple assessment formula based
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Figure 4.8: Calculation of DCPA and TCPA

on the exponential functions of TCPA and DCPA was proposed by Mou et al. (2010). In

this study, we have modified the formula proposed by Mou et al. (2010) by introducing

two weights, 𝛼 and 𝛽, that are related to DCPA and TCPA.

𝐶𝑅 =



exp(−𝛼 ∗ 𝐷𝐶𝑃𝐴 − 𝛽 ∗ 𝑇𝐶𝑃𝐴) if TCPA > 0

0 otherwise

(4.14)

In this study, it involves the evaluation of CR between the ship and the target obstacle.

To quantify the CR, 4.14 is employed. This equation considers the DCPA and TCPA,

where a smaller value of these parameters indicates a more hazardous situation. The CR

is equal to 0 if either the DCPA or TCPA is infinite, indicating the absence of any target

obstacles in the proximity or a negative TCPA. A negative TCPA suggests that either the

obstacle and the ship have already crossed each other or they are moving away from each
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Figure 4.9: Depiction of the dynamic obstacle avoidance problem

other without any chance of collision.

4.3.2 Observation Space

The observation state space formulated for this problem contains 9 variables, including

the 7 variables already defined in Sec. 4.2.1. Additional observation states are the relative

velocity of the obstacle with respect to the ship in the ship direction and the velocity of

the obstacle perpendicular to the line joining the obstacle and ship as shown in Fig. 4.9

4.3.2.1 Velocity of obstacle towards the ship( ®𝑣𝑥)

This parameter gives an idea of how fast the obstacle is approaching the ship.

4.3.2.2 Velocity of obstacle perpendicular to ship( ®𝑣𝑦)

This parameter gives the idea of whether the obstacle is on the starboard or port side of

the obstacle. It will be positive when the obstacle is on the port side of the ship while it

will be negative when on the starboard side.
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Figure 4.10: Depiction of training for dynamic obstacle avoidance

4.3.3 Action Space

This action space is the same as described in Sec. 4.2

4.3.4 Reward Structure

The reward structure is the same as described in Sec. 4.1.3

4.3.5 Training Process

In each episode, the ship begins at the origin (initial waypoint), oriented about the

positive X-axis of the GCS (𝜓 = 0) and with an initial velocity of design speed in the

surge direction. The ship has no initial acceleration in three degrees of freedom and no

initial velocity in the sway and yaw motions.

In each training episode, the destination is chosen at random, whereas the initial waypoint,

velocity, and heading are fixed at (0, 0), 1 and 0°, respectively. The radial distance

between the destination and the initial waypoint is sampled from a uniform distribution
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ranging from 8𝐿 to 18𝐿. At starting of the episode, the obstacle is placed at a radial

distance of 5𝐿 to 20𝐿. The velocity of the obstacle lies between 0 to 0.5𝐿 per timestep,

and the radius of an obstacle is kept between 0 to 1𝐿.

At the start of each episode, obstacles with random sizes, non-dimensional speed and

locations get spawned in the environment. The ship calculates the most critical obstacle

judged by calculating Collision Risk (CR) as shown in 4.14. The obstacle with the

maximum collision risk is chosen as the critical obstacle. The observation state variable

related to the obstacle is calculated for the critical obstacle. At each timestep, the

CR is calculated and according to that, the input is fed into the neural network until a

termination condition is reached.

4.3.6 Episode Termination

The termination criterion remains unchanged as specified in Sec. 4.2.5. Additionally,

the penalty for colliding with an obstacle has been reduced to −200. This decision was

made because, with the introduction of a dynamic obstacle, the ship’s trajectory is less

smooth due to the presence of multiple obstacles, resulting in a potentially more negative

reward compared to the static case where there was only one obstacle, leading to a less

negative overall reward.
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CHAPTER 5

RESULTS AND DISCUSSIONS

This section consists of four components. The first part compares DQN (3-actions)

controllers in siulations and experiments alngwith comparison with traditional PD

controller with ILOS guidance system through simulations. In the second part, simulations

are used to compare the waypoint tracking and path-following abilities of the three

DRL-based controllers: DQN(5-actions), PPO, and DDPG. The third part assesses the

capability of the DQN and DDPG controllers to handle static obstacles and further uses

hybrid architecture for path following and obstacle avoidance. Finally, in the fourth

part, the DQN and DDPG controllers are evaluated for their ability to handle dynamic

obstacles.

5.1 COMPARISON OF MODERN AND TRADITIONAL CONTROLLERS

In this section, the performance of DQN controllers with a 3-action state is compared to

that of a traditional PD controller through both simulation and experimental methods. The

DQN algorithm, is limited to discrete action values. In this part, we choose three action

values DQN (𝛿𝑐 ∈ −35°, 0°, 35°) for comparison with PD controller and in experiments.

5.1.1 Hyperparameters of the network

After tuning the hyperparameters, the agent is tested on various waypoint tracking

maneuvers to ensure satisfactory performance. An exponentially decaying function is

selected as the learning rate, and the hyperparameters for the DQN model are provided

in Table 5.1. The average training losses and episode returns over 100 episodes are

depicted in Fig. 5.1. To achieve a balance between under-fitting and over-fitting, the

policy at 8000 episodes is chosen and will be evaluated in the subsequent sections for

path following using DQN.
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Figure 5.1: Training returns and loss for the DQN model
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Table 5.1: Hyperparameters for DQN model

Hyperparameter Value
Initial Learning rate 0.001

Decay Steps 5000
Decay Rate 0.5

Hidden layers (64,64)
Discount factor(𝛾) 0.95
Sample batch size 128
Replay buffer size 100000
Activation function tanh

Maximum time steps 160
Time step interval Δt 0.3
Number of episodes 8000

Update frequency(time steps) 20
Target network update frequency(time steps) 1

Target update rate (𝜏) 0.01

It is also important to note that this study has used TensorFlow version 2.9.1 which allows

the GPU operations to be made deterministic. This means that the results produced in

the study can be reproduced on any computer by training the agent with the same random

seed value (TensorFlow).

5.1.2 Calm water results

5.1.2.1 Waypoint tracking

The study evaluates the DQN agent’s performance by analyzing its ability to track

waypoints and follow a path in various scenarios. The initial state of the vessel is

set with a unit non-dimensional velocity in the surge direction and oriented along the

global x-axis. To investigate the agent’s ability to track points in all quadrants, the study

specifies waypoints (10𝐿, 10𝐿), (10𝐿,−10𝐿), (−10𝐿,−10𝐿) and (−10𝐿, 10𝐿) for each

case using the same starting state as mentioned above. Fig. 5.2 illustrates that the trained

agent successfully reaches the destination points in all four quadrants, and the path it

takes is smooth. Furthermore, the agent attempts to reduce both the cross-track error

and the course angle error simultaneously. The trajectory’s root mean square cross-track

error is defined as follows:
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Figure 5.2: Single waypoint tracking for DQN

𝑑𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑛=1

𝑑2
𝑐 (𝑛Δ𝑡) (5.1)

where 𝑁 is the number of time steps in the trajectory and 𝑑𝑐 (𝑛Δ𝑡) denotes the value of

the cross track error at the 𝑛𝑡ℎ time step. It is seen from Fig. 5.3 that the 𝑑𝑅𝑀𝑆𝐸 for the

larger circle is less than the corresponding value for the smaller circle.

The results of the agent’s ability to track an elliptical path are illustrated in Fig. 5.4. The

elliptical path has major and minor axes of lengths 28𝐿 and 24𝐿 respectively, and is

discretized into 15 waypoints. The ship commences at (𝑥, 𝑦) = (14𝐿, 0) with an initial

orientation along the negative Y-axis (𝜓 = −𝜋/2). The distance between the waypoints

is approximately 5𝐿, and the local radius of curvature along the path ranges from about
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(a) Eight (𝑑𝑅𝑀𝑆𝐸 = 0.6095𝐿) (b) Eight (𝑑𝑅𝑀𝑆𝐸 = 0.5395𝐿)

Figure 5.3: Circle maneuver waypoint tracking

10𝐿 to 16𝐿. The agent’s ability to track the elliptical path is successful with a root mean

square error of 𝑑𝑅𝑀𝑆𝐸 = 0.2969𝐿.

In order to examine the influence of propeller rotation on asymmetry in the port and

starboard turns, a path in the shape of an "eight" was chosen and discretized into 23

waypoints. The ship initiates the maneuver with a heading of 𝜓=0 from the origin and

completes the lower circle of radius 9𝐿 before finishing the upper circle of the same radius

to successfully complete the eight maneuver, as depicted in Fig. 5.5. The results indicate

that the tracking performance is not impacted by the propeller rotation asymmetry as the

turns in both directions are tracked with equal accuracy.

5.1.3 Experiments

To verify the accuracy of the simulation results through experimental testing, a scaled

free-running model of the KCS ship is utilized with the guidance of the RL agent’s

policy. As illustrated in Fig. 5.6, the scaled ship model is equipped with a brushless

DC motor to control the propeller and a stepper motor to control the rudder, while the

propeller RPM remains fixed and the RL agent policy outputs the commanded rudder

angle. Furthermore, the vehicle is fitted with an Ardusimple simpleRTK2B-SBC GPS

system and an SBG Ellipse-A IMU, which are shown in Fig. 5.7, and their measurements
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Figure 5.4: Ellipse maneuver waypoint tracking (𝑑𝑅𝑀𝑆𝐸 = 0.2969𝐿)

Figure 5.5: Eight (‘8’) maneuver waypoint tracking (𝑑𝑅𝑆𝑀𝐸 = 0.4557𝐿)
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Figure 5.6: 1:75.5 scaled model of KCS

Table 5.2: Sensors Onboard

Sensor ROS Standard Frequency
Message (Hz)

SBG Ellipse-A (IMU) sensor_msgs/Imu 100
simpleRTK2B SBC sensor_msgs/NavSatFix 10

are combined through a Kalman filter. The experiments are conducted on IIT Madras

Lake, which measures 300 𝑚 in span and 100 𝑚 in width.

Because of the limited space available in the lake, it was not possible to execute the

same maneuvers as detailed in the previous section. Consequently, simulations and

experiments were conducted using a predetermined set of waypoints that form a 40 𝑚

square in the middle of the lake. The GPS coordinates of the waypoints are presented in

Table 5.3. It is worth noting that the first and last waypoints are identical and serve as the

reference point.

In Fig. 5.8, the white lines represent the straight lines connecting the waypoints defined

in Table 5.3, while the red line illustrates the actual trajectory of the vehicle throughout

the experiment. The comparison between the experimental and simulated results is
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Figure 5.7: Sensors used: simpleRTK2B SBC(left) and SBG Ellipse-A (right)

Figure 5.8: Waypoints and the Trajectory: white represents the square generated by the
waypoints, red represents the trajectory traversed by the vessel.
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Figure 5.9: Comparison of the path traversed by the model in experiment and simulation
(Simulation 𝑑𝑅𝑀𝑆𝐸 = 0.6286𝐿 Experimental 𝑑𝑅𝑀𝑆𝐸 = 0.8257𝐿)

Figure 5.10: Comparison of cross-track error between experiment and simulation.
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Figure 5.11: Comparison of course-angle error between experiment and simulation.

presented in Fig. 5.9, while the variations in the cross-track error and course angle error

are depicted in Fig. 5.10 and Fig. 5.11, respectively. The primary aim of the model was

to follow a setpoint of 𝑑𝑐 = 0 for each edge of the square until the vertex waypoint was

reached. The circle of acceptance was set at 3𝐿 for both experiments and simulations

during waypoint tracking. The course angle error values from the simulations correspond

well with the corresponding experimental values, and the time of switching waypoints

also agrees between the two. The cross-track error curves are slightly different, where the

simulations exhibit a higher initial overshoot than the experiments. This can be attributed

to minor variations between the simulated and true vessel dynamics and the presence

of mild gust winds during the experiments. Overall, the simulated and experimental

trajectories match well, validating the model and the DQN-based controller for the craft.

5.2 PERFORMANCE WITH WIND FORCES

In a realistic ocean environment, vessels will face disturbances caused by wind, waves,

and currents. However, in this study, we will focus on the impact of wind disturbances

on the vessel to assess the DQN controller’s ability to reject disturbances.
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Table 5.3: Waypoints

Waypoints Latitude (deg) Longitude (deg)
WP1 12.994224 80.239620
WP2 12.993859 80.239544
WP3 12.993474 80.239544
WP4 12.993474 80.239151
WP5 12.993859 80.239151
WP6 12.993859 80.239544
WP7 12.994224 80.239620

5.2.1 Modelling wind forces

Until now, the path-following ability of autonomous ships was examined using the DQN

agent without considering external environmental forces. This section, however, focuses

on the agent’s ability to follow a desired path under varying wind conditions, ranging from

moderate to severe. As the observation states do not take into account wind parameters,

the agent cannot anticipate the effects of wind (feedforward control) and can only react

to deviations from the desired path once they become significant (feedback control).

To incorporate the effects of wind forces and moments, the right-hand side of (2.5) is

modified by including wind models. The wind velocity, which is non-dimensional, is

denoted as 𝑉𝑤, and its direction is represented by 𝛽𝑤, which is defined as the angle

between the wind direction and the positive X-axis of the GCS. The non-dimensional

wind velocity components with respect to the BCS of the ship are then defined according

to (5.2).

𝑢𝑤 = 𝑉𝑤 cos (𝛽𝑤 − 𝜓)

𝑣𝑤 = 𝑉𝑤 sin (𝛽𝑤 − 𝜓)
(5.2)

The non-dimensional velocity components of the ship relative to the wind can be defined

as 𝑢𝑟𝑤 = 𝑢 − 𝑢𝑤 and 𝑣𝑟𝑤 = 𝑣 − 𝑣𝑤. The magnitude of non-dimensional relative wind
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Table 5.4: Wind force parameters

Parameter Value
𝐴𝑥 0.1064
𝐴𝑦 0.7601
𝐶𝑤𝑥 𝑐𝑜𝑠(𝛾𝑤)
𝐶𝑤𝑦 𝑠𝑖𝑛(𝛾𝑤)
𝐶𝑤𝜓 0.5𝑠𝑖𝑛(𝛾𝑤)
𝜌𝑎 1.225𝑘𝑔/𝑚3

𝜌 1025𝑘𝑔/𝑚3

velocity𝑈𝑤𝑟 and relative wind angle with respect to the vessel 𝛾𝑤 are given by (5.3).

𝑈𝑤𝑟 =

√︃
𝑢2
𝑟𝑤 + 𝑣2

𝑟𝑤

𝛾𝑤 = arctan 2(−𝑣𝑟𝑤,−𝑢𝑟𝑤)
(5.3)

The non-dimensional wind force components𝑊𝑥 ,𝑊𝑦 and the non-dimensional wind yaw

moment𝑊𝜓 can then be calculated as shown in (5.4)

𝑊𝑥 = 𝐶𝑤𝑥 (𝛾𝑤)
𝜌𝑎

𝜌
𝐴𝑥𝑈

2
𝑤𝑟

𝑊𝑦 = 𝐶𝑤𝑦 (𝛾𝑤)
𝜌𝑎

𝜌
𝐴𝑦𝑈

2
𝑤𝑟

𝑊𝜓 = 𝐶𝑤𝜓 (𝛾𝑤)
𝜌𝑎

𝜌
𝐴𝑦𝐿𝑂𝐴𝑈

2
𝑤𝑟

(5.4)

The non-dimensional lateral and longitudinal projected areas of the hull above water in

the yz and xz planes in the BCS are denoted as 𝐴𝑥 and 𝐴𝑦, respectively. It should be

noted that the non-dimensional factor for the projected areas 𝐴𝑥 and 𝐴𝑦 is taken as 𝐿𝑑𝑒𝑚.

The wind coefficients 𝐶𝑤𝑥 , 𝐶𝑤𝑦 and 𝐶𝑤𝜓 are also non-dimensional and assumed to be

functions of the relative wind direction 𝛾𝑤 . The density of air and water are represented

as 𝜌𝑎 and 𝜌, respectively. The non-dimensional overall length of the vessel is denoted by

𝐿𝑂𝐴, which is normalized by the length between perpendiculars 𝐿. The wind parameters

used in the study are provided in Table 5.4.

The wind speed and the direction are varied to simulate different scenarios. The
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(a) Straight Line Path (𝑑𝑅𝑀𝑆𝐸 = 0.1227𝐿) (b) Straight Line Path (𝑑𝑅𝑀𝑆𝐸 = 0.1615𝐿)

(c) Straight Line Path (𝑑𝑅𝑀𝑆𝐸 = 0.9110𝐿) (d) Straight Line Path (𝑑𝑅𝑀𝑆𝐸 = 0.9938𝐿)

(e) Ellipse (𝑑𝑅𝑀𝑆𝐸 = 0.8456𝐿) (f) Eight (𝑑𝑅𝑀𝑆𝐸 = 0.3941𝐿)

Figure 5.12: Different cases for path following in presence of constant and uniform wind
for DQN(3-actions) controller
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Table 5.5: Wind force cases

Case Path 𝑣𝑤 𝛽𝑤 𝑑𝑅𝑀𝑆𝐸
1 Line 6 𝜋/2 0.1227𝐿
2 Line 6 −𝜋/2 0.1615𝐿
3 Line 9 𝜋/2 0.9110𝐿
4 Line 9 −𝜋/2 0.9938𝐿
5 Ellipse maneuver 6 0 0.8456𝐿
6 Eight maneuver 6 𝜋/4 0.3941𝐿

performance of the controller in the presence of constant wind is evaluated.

5.2.2 Results

The research focuses on examining the effect of wind speeds and directions on a vessel’s

path-tracking performance. Specifically, six different cases are considered, as described

in Table 5.5. The first four cases involve straight-line paths, while the remaining two

involve an ellipse and eight maneuvers. Table 5.5 reports the non-dimensional wind speed

and direction for each case, along with the corresponding 𝑑𝑅𝑀𝑆𝐸 values observed. Fig.

5.12 illustrates the path tracked for each case listed in Table 5.5. The outcomes indicate

that in moderate winds (𝑉𝑤 = 6𝑈), the vessel experiences minor initial deviations while

tracking the straight-line paths but manages to recover later. Stronger winds lead to more

significant initial deviations and substantially increase the 𝑑𝑅𝑀𝑆𝐸 compared to moderate

winds. For cases 5 and 6, the model can track the desired path successfully even in the

presence of strong winds. Although the beam wind leads to significant initial deviation

in the ellipse maneuver, the controller can eventually navigate through all the waypoints

and complete the intended path. These simulations demonstrate the controller’s ability

to effectively reject disturbances.

5.2.3 Comparison with a PD-based controller

This section compares the path-following ability of the DQN agent with that of a PD

controller. The study employs a Proportional Derivative (PD) controller to ensure that the

vessel’s heading angle 𝜓 converges to the desired heading angle 𝜓𝑑 , which is determined
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Figure 5.13: ILOS Guidance

using the integral line of sight (ILOS) guidance law as described in (Fossen, 2021). The

error 𝑒 is the difference between the current heading angle 𝜓 and the reference value 𝜓𝑑

and is defined in (5.5). The derivative of the error with respect to time is expressed in

(5.6).

𝑒 = 𝜓𝑑 − 𝜓 (5.5)

¤𝑒 = ¤𝜓𝑑 − ¤𝜓 = −𝑟 (5.6)

where ¤𝜓𝑑 is taken to be 0 for the control implementation. This is a fair approximation as

the rate of change of desired heading angle ¤𝜓𝑑 is governed by the outer guidance loop

and varies slowly. Thus the proportional derivative (PD) control law can be expressed as

𝛿𝑐 = 𝐾𝑝𝑒 + 𝐾𝑑 ¤𝑒 = 𝐾𝑝 (𝜓𝑑 − 𝜓) − 𝐾𝑑𝑟 (5.7)
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Figure 5.14: Comparison of the path traversed by the model in PD controller and RL
controller in simulation
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where 𝛿𝑐 is the commanded rudder angle, 𝐾𝑝 is the proportional gain and 𝐾𝑑 is the

derivative gain of the controller. These controller gains are tuned in such a way that

deviation of the vessel’s trajectory from the desired square trajectory as shown in Fig.

5.14a, is minimal. 𝐾𝑑 = 4.0 and 𝐾𝑝 = 2.0 were found to provide the best performance

among the values investigated in the tuning process. The study tested the controllers

against two other trajectories, an eight and an ellipse. The RL controller outperformed

the PD agent by 54.56% for the eight maneuver, and by 29.68% for the ellipse trajectory.

The plots are shown in Fig. 5.14 and the RMSE of cross track is listed in Table 5.6. Thus

it can be seen that the traditional controller performance parallels the RL controller on

paths for which the traditional controller gains are tuned. However, the same traditional

controller is unable to perform as well as the RL controller on different paths for which

its gains were not tuned.

Table 5.6: Comparison of the DQN and Traditional controller

Trajectory DQN PD
Square 0.8428L 0.6859L
Ellipse 0.2537L 0.3290L
Eight 0.3234L 0.5322L

5.3 COMPARISON OF DRL-BASED CONTROLLERS

In this section, three different Deep Reinforcement Learning based controllers are

compared in simulations. The RL-based controllers are based on DQN, PPO and

DDPG algorithms. The DQN algorithm action space is extended to five i.e. (𝛿𝑐 ∈

−35°,−20°, 0°, 20°, 35°) for effectively comparing between the later two. The DDPG

and PPO can operate with a continuous action space. The action space is taken to be

continuous: 𝛿𝑐 ∈ [−35°, 35°]. The relation between commanded rudder 𝛿𝑐 and the

actual rudder angle 𝛿 is the same as defined in (2.15).
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5.3.1 Waypoint Tacking

The study evaluates the performance of RL controllers by analyzing their ability to

track waypoints and follow paths in various situations. The starting condition of the

vessel was identical to the one discussed in Sec. 5.1.2.1. The DQN, DDPG, and PPO

controllers were tested in all four quadrants, as depicted in Fig. 5.15, 5.16, and 5.17. The

results show that the trained agent successfully reached the destination points in all four

quadrants. Additionally, the path taken by the agent was found to be sufficiently smooth,

and the agent simultaneously reduced the cross-track error and course angle error. The

controller effort (C.E) is defined as the integral of abs(delta) over the simulation trajectory

divided by the total time of the trajectory described in (5.8).

𝐶.𝐸 =
|𝛿 |
𝑁

(5.8)

where N is the number of time steps in the trajectory and 𝛿 is the actual rudder angle.

5.3.2 Hyperparameters of the network

The agent is calibrated for satisfactory waypoint tracking by tuning the hyperparameters.

The agent is then tested by simulating various maneuvers for waypoint tracking. The

learning rate is chosen as an exponentially decaying function. The hyperparameters for

the DQN, PPO and DDPG are shown in Table 5.7, 5.8 and 5.9. The returns vs episodes

and loss vs episodes plots for DQN, PPO and DDPG are shown in Fig. 5.18, 5.19 and

5.20.

5.3.3 Path following through waypoint tracking

Since the RL agent is successful in being able to guide the ship to the destination waypoint,

it can be directed to follow complex paths that are discretized into an adequate number

of waypoints assuming that the chosen set of waypoints describes the path effectively.

To test the turning ability and path following ability of the agent, circles of radius 6𝐿 and

12𝐿, ellipse and eight are discretized into a number of points as done in Sec. 5.1.2.1. It
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Figure 5.15: Single waypoint tracking for DQN

Table 5.7: Hyperparameters for DQN model

Hyperparameter Value
Initial Learning rate 0.001

Decay Steps 50000
Decay Rate 0.4

Hidden layers (64,64)
Discount factor(𝛾) 0.96
Sample batch size 128
Replay buffer size 100000
Activation function tanh

Maximum time steps 160
Time step interval Δt 0.3
Number of episodes 10000

Update frequency(time steps) 10
Time step interval Δt 0.3

Target network update frequency(time steps) 1
Target update rate (𝜏) 0.01
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Figure 5.16: DDPG Single waypoint tracking

Table 5.8: Hyperparameters for PPO model

Hyperparameter Value
Initial Learning rate 0.001

Decay Steps 3000
Decay Rate 0.5
Actor layers (128,128)
Critic layers (128,128)

Discount factor(𝛾) 0.96
Clip Ratio 0.2
Lambda 0.95

Entropy Regularisation 0.01
Replay buffer size 8000

Epochs 10
Episode per epochs 50
Number of Iteration 100
Time step interval Δt 0.3
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Figure 5.17: PPO Single waypoint tracking

Table 5.9: Hyperparameters for DDPG model

Hyperparameter Value
Actor Learning Rate 0.001
Critic Learning Rate 0.001
Actor Hidden Layers (256,256)
Critic Hidden Layers (256,256)
Discount factor(𝛾) 0.96
Sample batch size 128
Replay buffer size 100000

Maximum time steps 160
Time step interval Δt 0.3

Update frequency(time steps) 10
Target network update frequency(time steps) 1

Target update rate (𝜏) 0.01
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Figure 5.18: Training returns and loss for the DQN model
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Figure 5.19: Training returns and loss for the PPO model

69



Figure 5.20: Training returns and loss for the DDPG model
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can be seen that the agents were able to track the elliptical path successfully as shown in

Fig. 5.21, 5.22, 5.23 and 5.24.

A path that resembles a “star" shape is ultimately established to assess the agent’s ability

to make sharp turns at corners while travelling in a straight line. It should be noted that

due to the ship’s significant inertia, the agent requires some time to execute the maneuver

in the intended direction. Figure 5.25 illustrates that the agents were able to successfully

execute the maneuver.

5.3.4 Performance with wind forces

The controllers are compared in the presence of uniform and constant wind. Though the

controllers were able to track the waypoints successfully, their performance is compared

with respect to RMSE and controller effort.

To simulate various scenarios, different wind speeds and directions are adjusted, and

the performance of the controller in the presence of constant wind is assessed. While

multiple wind speeds and directions are analyzed, specific cases are illustrated in Fig.

5.26, 5.27, 5.28, 5.29, 5.30 and 5.31, with the first four corresponding to straight line

paths and the fifth and sixth showcasing ellipse and eight maneuvers under steady wind

conditions. Despite the significant initial deviation caused by the beam wind in the ellipse

and eight maneuvers, as demonstrated in Fig. 5.30 and 5.31, the model successfully

follows all the waypoints and completes the desired path, indicating the controller’s

effectiveness in rejecting disturbances.

5.3.5 Results

This section discusses the key features and outcomes of the data-driven RL controllers

presented in previous sections. All three DRL algorithms have been successful in tracking

waypoints and following specified paths. To facilitate a comparison, root mean squared

errors (RMSE) and controller effort (C.E) are computed across the trajectory and listed

in Table 5.10. Additionally, Fig. 5.32 presents a comparison of Loss and Returns for
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(a) DQN

(b) PPO

(c) DDPG

Figure 5.21: Circle (radius = 6L) maneuver waypoint tracking
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(a) DQN

(b) PPO

(c) DDPG

Figure 5.22: Circle (radius = 12L) maneuver waypoint tracking
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(a) DQN

(b) PPO

(c) DDPG

Figure 5.23: Ellipse maneuver waypoint tracking
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(a) DQN

(b) PPO

(c) DDPG

Figure 5.24: Eight maneuver waypoint tracking
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(a) DQN

(b) PPO

(c) DDPG

Figure 5.25: Star maneuver waypoint tracking
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(a) DQN

(b) PPO

(c) DDPG

Figure 5.26: Straight Line Path with wind 𝑉𝑤 = 6𝐿 and 𝛽𝑤 = 90°
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(a) DQN

(b) PPO

(c) DDPG

Figure 5.27: Straight Line Path with wind 𝑉𝑤 = 6𝐿 and 𝛽𝑤 = 270°
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(a) DQN

(b) PPO

(c) DDPG

Figure 5.28: Straight Line Path with wind 𝑉𝑤 = 9𝐿 and 𝛽𝑤 = 90°
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(a) DQN

(b) PPO

(c) DDPG

Figure 5.29: Straight Line Path with wind 𝑉𝑤 = 9𝐿 and 𝛽𝑤 = 270°
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(a) DQN

(b) PPO

(c) DDPG

Figure 5.30: Ellipse Path with wind 𝑉𝑤 = 6𝐿 and 𝛽𝑤 = 0°
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(a) DQN

(b) PPO

(c) DDPG

Figure 5.31: Eight Path with wind 𝑉𝑤 = 6𝐿 and 𝛽𝑤 = 45°
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three controllers. It is observed that the PPO algorithm achieves convergence within

3000 episodes, while DDPG takes 5000 episodes and DQN takes 8000 episodes. The

comparison plot is drawn based on these episode counts.

In terms of computational demand, DQN stands out as less demanding compared to

DDPG and PPO since the latter two utilize multiple neural networks. However, in

practical scenarios where continuous action is required, DDPG and PPO are more

suitable choices.

Considering the findings in Table 5.10, the PPO controller consistently exhibits the lowest

values of RMSE and C.E. Notably, when the ship attempts to move in a straight line,

PPO demonstrates an RMSE approximately 10 times better than the other controllers.

Additionally, PPO achieves convergence faster than DDPG and DQN, requiring fewer

training scenarios.

Considering these aspects, the PPO algorithm emerges as the most promising among the

three alternatives.

5.4 STATIC OBSTACLE AVOIDANCE

In this sub-section, DRL-based controllers are trained to avoid static obstacles as

mentioned in Sec. 4.2.

5.4.1 Hyperparameters of the network

The agent is calibrated for satisfactory waypoint tracking by tuning the hyperparameters.

The agent is then tested by simulating various maneuvers for waypoint tracking. The

learning rate is chosen as an exponentially decaying function. The hyperparameters for

the DQN and DDPG are shown in Table 5.11 and 5.12. The returns vs episodes and loss

vs episodes plots for DQN and DDPG are shown in Fig. 5.33 and 5.34
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Figure 5.32: Comparison of Loss and Returns of different DRL-based controllers
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Table 5.10: Comparison of the three DRL-based controllers in terms of RMSE and CE

Maneuver DQN PPO DDPG
RMSE C.E RMSE C.E RMSE C.E

(10,10) 0.9101 0.1632 0.8405 0.1214 0.8343 0.1444
(-10,10) 2.4795 0.2237 2.4427 0.1861 2.4111 0.2859
(-10,-10) 2.2915 0.2696 2.3404 0.1832 2.3636 0.2000
(10,-10) 0.9019 0.2091 0.8240 0.1230 0.8730 0.1082
Ellipse 0.2736 0.2411 0.3146 0.1971 0.3011 0.1493
Eight 0.3545 0.3128 0.4158 0.2375 0.4830 0.2333
Star 1.4354 0.2560 1.5489 0.1422 1.5472 0.1489

Circle (Radius = 6L) 0.6129 0.3749 0.6492 0.2787 0.6193 0.2292
Circle (Radius = 12L) 0.4186 0.2306 0.3921 0.1809 0.3981 0.1572

Ellipse (𝑉𝑤 = 6,𝛽𝑤 = 0°) 0.7463 0.2986 0.5453 0.2506 0.5726 0.2134
Eight (𝑉𝑤 = 6,𝛽𝑤 = 45°) 0.3591 0.3226 0.3256 0.2428 0.4905 0.2737

Straight Line(𝑉𝑤 = 6,𝛽𝑤 = 90°) 0.0864 0.1611 0.0048 0.0191 0.0377 0.0727
Straight Line(𝑉𝑤 = 6,𝛽𝑤 = 270°) 0.0799 0.1700 0.0032 0.0140 0.0390 0.0744
Straight Line(𝑉𝑤 = 9,𝛽𝑤 = 90°) 0.0587 0.1701 0.0085 0.0402 0.0565 0.0784
Straight Line(𝑉𝑤 = 9,𝛽𝑤 = 270°) 0.0688 0.1850 0.0027 0.0168 0.0337 0.0643

Table 5.11: Hyperparameters for DQN model

Hyperparameter Value
Initial Learning rate 0.00075

Decay Steps 50000
Decay Rate 0.4

Hidden layers (128,128)
Discount factor(𝛾) 0.97
Sample batch size 128
Replay buffer size 100000
Activation function tanh

Maximum time steps 160
Time step interval Δt 0.3
Number of episodes 9000

Update frequency(time steps) 10
Time step interval Δt 0.3

Target network update frequency(time steps) 1
Target update rate (𝜏) 0.01
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Figure 5.33: Training returns and loss for the DQN model
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Figure 5.34: Training returns and loss for the DDPG model
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Table 5.12: Hyperparameters for DDPG model

Hyperparameter Value
Actor Initial Learning Rate 0.0001

Actor Decay Steps 30000
Actor Decay Rate 0.5

Critic Initial Learning Rate 0.00075
Critic Decay Steps 30000
Critic Decay Rate 0.5

Actor Hidden Layers (128,128)
Critic Hidden Layers (128,128)
Discount factor(𝛾) 0.98
Sample batch size 128
Replay buffer size 100000

Maximum time steps 160
Noise Multiplier 0.15
Noise Episodes 12000

Time step interval Δt 0.3
Update frequency(time steps) 10

Target network update frequency(time steps) 1
Target update rate (𝜏) 0.01

5.4.2 Single static obstacle avoidance

In this study, a model was trained with specific hyperparameters as listed in Table 5.11

and 5.12. The trained model was then tested on various path configurations, obstacle sizes

and positions to evaluate its performance in obstacle avoidance and waypoint tracking.

Results showed that both DQN and DDPG controllers were successful in performing

these tasks, as evidenced by the trajectory plots in Fig. 5.35, 5.36, 5.40, and 5.41.

To evaluate the robustness of the model, an obstacle was placed in the path of the ship

and the controllers were compared in terms of their RMSE of the cross-track error and

Controller Effort (CE). The trajectory plots in Fig. 5.37, 5.38, 5.42, 5.43, 5.39, and 5.44

were used to compare the performance of the controllers.

Table 5.13, 5.14, 5.15, and 5.16 summarize the results of this comparison. Overall, it was

observed that DDPG outperformed DQN in cases where the obstacle was in between the

line joining the waypoints, especially when the size of the obstacle was large. In contrast,
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Figure 5.35: DQN agent successfully avoids obstacle of size 0.25L when present on line
joining the waypoints

DQN performed better in cases where the obstacle was in the path of the ship, especially

when the size of the obstacle was small. However, the difference in RMSE and CE

between the two controllers was not significant and did not exceed 15%. Additionally, as

the size of the obstacle increased, the RMSE value of DDPG decreased more compared

to the DQN controller.

5.4.3 Multiple Static Obstacle Avoidance

The model was trained with a static obstacle in the environment, limiting the neural

network’s ability to consider only one obstacle at a time, with no option to adjust the

network’s size. Consequently, we utilized Collision Risk (CR) to identify the most

critical obstacle with a potential collision risk and conveyed that obstacle’s information

to the neural network to evade it. Fig. 5.45 shows the DQN and DDPG agent to avoid

multiple static obstacles of size 0.25𝐿 while performing a square maneuver. Clearly, the
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Figure 5.36: DQN agent successfully avoids obstacle of size 0.5L when present on line
joining the waypoints

Table 5.13: Comparison of agent when obstacle of size 0.25L is in between line joining
the waypoints

Maneuver DQN DDPG
RMSE C.E RMSE C.E

(10,10) 1.1343 0.3150 0.9800 0.2057
(-10,10) 2.3476 0.2885 2.2222 0.3023
(-10,-10) 2.3030 0.2891 2.2059 0.3461
(10,-10) 1.2163 0.2411 1.0171 0.3223
(15,0) 0.9902 0.2337 0.4945 0.1762
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Figure 5.37: DQN agent successfully avoids obstacle of size 0.25L when present in path
of ship

Table 5.14: Comparison of agent when obstacle of size 0.5L is in between line joining
the waypoints

Maneuver DQN DDPG
RMSE C.E RMSE C.E

(10,10) 1.2944 0.2954 1.0624 0.1845
(-10,10) 2.4187 0.3096 2.2609 0.2926
(-10,-10) 2.3179 0.2737 2.2126 0.3709
(10,-10) 1.3530 0.2983 1.1100 0.2963
(15,0) 1.189 0.2756 0.6402 0.1580

Table 5.15: Comparison of agent when obstacle of size 0.25L is in path of the ship

Maneuver DQN DDPG
RMSE C.E RMSE C.E

(10,10) 0.7876 0.2874 0.8226 0.2837
(-10,10) 2.0379 0.3355 2.1053 0.3295
(-10,-10) 2.0965 0.3692 2.0563 0.2812
(10,-10) 0.7161 0.3132 0.8074 0.2038
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Figure 5.38: DQN agent successfully avoids obstacle of size 0.5L when present in path
of ship

Figure 5.39: DQN agent successfully avoids obstacle on a straight line path
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Figure 5.40: DDPG agent successfully avoids obstacle of size 0.25L when present on
line joining the waypoints

Table 5.16: Comparison of agent when obstacle of size 0.5L is in is in path of the ship

Maneuver DQN DDPG
RMSE C.E RMSE C.E

(10,10) 0.8451 0.2839 0.8997 0.2539
(-10,10) 2.1433 0.3076 2.1273 0.3299
(-10,-10) 2.0908 0.3778 2.0598 0.2920
(10,-10) 0.8057 0.2794 0.9201 0.2185
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Figure 5.41: DDPG agent successfully avoids obstacle of size 0.5L when present on line
joining the waypoints
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Figure 5.42: DDPG agent successfully avoids obstacle of size 0.25L when present in
path of ship
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Figure 5.43: DDPG agent successfully avoids obstacle of size 0.5L when present in path
of ship

Figure 5.44: DDPG agent successfully avoids obstacle on a straight line path
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DDPG agent is outperforming the DQN agent as the prior has less RMSE as well as less

controller effort for the trajectory.

5.5 DYNAMIC OBSTACLE AVOIDANCE

In this subsection, DQN and DDPG-based controllers are trained to avoid dynamic

obstacles as mentioned in Sec. 4.3.

5.5.1 Hyperparameters of the network

The agent is calibrated for satisfactory waypoint tracking by tuning the hyperparameters.

The agent is then tested by simulating various maneuvers for waypoint tracking. The

learning rate is chosen as an exponentially decaying function. The hyperparameters for

the DQN and DDPG are shown in Table 5.17 and 5.18. The DQN agent trained for 8000

episodes is choosen for the task and 6000 episodes for DDPG agent. The returns vs

episodes and loss vs episodes plots for DQN and DDPG are shown in Fig. 5.46 and 5.47.

It’s important to note that reducing the loss value to zero may not be possible or necessary.

The overall goal of a DRL is to learn an optimal policy that maximizes the long-term

reward, not to minimize the loss value. As long as the agent is able to learn an effective

policy that avoids obstacles and maximizes the reward, the loss value can be considered

acceptable.

5.5.2 Obstacle Avoidance results

The results depicted in Link 1, Link 2, Link 3 and Link 4 shows that the DQN controller

was successful in avoiding an obstacle in different cases with different size of obstacle

and velocity of the obstacle.

The results depicted in Link 5, Link 6, Link 7 and Link 8 shows that the DDPG controller

was successful in avoiding an obstacle in different cases with different size of obstacle

and velocity of the obstacle.
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Table 5.17: Hyperparameters for DQN model

Hyperparameter Value
Initial Learning rate 0.00075

Decay Steps 50000
Decay Rate 0.5

Hidden layers (128,128)
Discount factor(𝛾) 0.97
Sample batch size 128
Replay buffer size 100000
Activation function tanh

Maximum time steps 160
Time step interval Δt 0.3
Number of episodes 8000

Update frequency(time steps) 5
Time step interval Δt 0.3

Target network update frequency(time steps) 1
Target update rate (𝜏) 0.01

Table 5.18: Hyperparameters for DDPG model

Hyperparameter Value
Actor Initial Learning Rate 0.0001

Actor Decay Steps 60000
Actor Decay Rate 0.4

Critic Initial Learning Rate 0.001
Critic Decay Steps 60000
Critic Decay Rate 0.4

Actor Hidden Layers (128,128)
Critic Hidden Layers (128,128)
Discount factor(𝛾) 0.98
Sample batch size 128
Replay buffer size 100000

Maximum time steps 160
Noise Multiplier 0.15
Noise Episodes 11000

Time step interval Δt 0.3
Update frequency(time steps) 5

Target network update frequency(time steps) 1
Target update rate (𝜏) 0.02
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Figure 5.46: Training returns for DQN dynamic obstacle model
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Figure 5.47: Training returns for DDPG dynamic obstacle model
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Table 5.19: Comparison of agent in case of dynamic obstacle

Maneuver DQN DDPG
RMSE C.E RMSE C.E

Head on 1.136 0.323 0.8712 0.245
Velocity along same direction 1.126 0.325 1.167 0.166

Starboard Side 0.5186 0.3305 0.587 0.2204
Port Side 0.772 0.305 1.1034 0.3979

In the testing of DQN and DDPG controllers for autonomous ship control, four different

scenarios were considered - starboard side obstacle, portside obstacle, head-on obstacle,

and along the same direction velocity of obstacle. The performance of both controllers

was evaluated based on two key metrics: RMSE of cross-track error and Controller

Effort (CE). The results indicated that both controllers performed well in most scenarios.

However, the DDPG controller exhibited a lower CE in most cases, indicating that it

required less effort to navigate the ship through the obstacles. On the other hand, the

DQN controller had a lower RMSE of cross-track error in most scenarios, which implies

that it was more effective at keeping the ship on course. It is noteworthy that the choice

of controller would ultimately depend on the specific requirements of the autonomous

ship, such as the nature of the obstacle and the level of precision required in navigation.

Nevertheless, these results provide valuable insights into the strengths and limitations of

the DQN and DDPG controllers, which can be used to optimize autonomous ship control

in real-world scenarios.
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CHAPTER 6

DISCUSSION

6.1 WAYPOINT TRACKING

This section covers the noteworthy characteristics of the data-driven RL controllers

exhibited in the previous sections.

In order to assess the performance of the RL agent in controlling the vessel under

windy conditions, various wind speeds and directions were simulated for a straight-line

maneuver with the vessel starting at (0, 0) and 𝜓 = 0, while attempting to follow a

straight line along the x-axis. Fig. 6.1 presents the 𝑑𝑅𝑀𝑆𝐸 ratio for two wind speeds and

nine wind directions in comparison to calm water conditions. The results indicate that

the RL agent can effectively track waypoints for all wind directions with an error of less

than 20% compared to calm water conditions when the wind speed is low (𝑉𝑤 = 6𝑈).

However, for a wind speed of 𝑉𝑤 = 9𝑈, the wind directions of ±90° show greater

deviation compared to calm water conditions. Furthermore, Fig. 5.26 demonstrates

that the maximum deviation occurs at the beginning of the episode when the wind is

perpendicular to the vessel, causing significant deviation before the vessel can regain its

course and accurately follow the path.

The figure displayed in Figure 5.12d indicates that in the presence of high wind speeds

(𝑉𝑤 = 9𝑈) while attempting to follow a straight line path, there is a 10% variation in

𝑑𝑅𝑀𝑆𝐸 when comparing a wind heading direction of −90° with +90°. The difference

in performance can be attributed to the non-symmetrical rudder dynamics caused by

the asymmetry in flow past the rudder when applying port and starboard rudder angles.

This effect is taken into account in the rudder dynamics (as discussed in Section 2.3).

The effect is not significant for moderate wind speeds of 𝑉𝑤 = 6, but becomes more



pronounced for higher wind speeds of 𝑉𝑤 = 9, where the wind forces and moments are

stronger.

6.1.1 Yaw rate

The ship’s observation state vector includes the yaw rate ‘𝑟’ which has a significant

influence on the ship’s trajectory, despite not contributing to the reward. To analyze

this effect, an agent is trained separately by removing the yaw rate from its observation

state, while keeping all other hyperparameters constant between the models, as stated

in Table 5.1. The tracked trajectory of the agent without the yaw rate is shown in Fig.

6.2. The results demonstrate that the agent with the yaw rate, as depicted in Fig. 5.2,

performs better than the agent without it. This implies that the yaw rate is a crucial

factor for the agent to consider when making decisions regarding ship control, despite its

non-contribution to the reward.

6.1.2 Reward Function

The reward at each time step should be negative because it drives the agents to reach the

destination as soon as possible. Since, the RL agent wants to maximise the reward at

each episode, if the agent has a negative reward at each timestep, the cumulative sum of

the reward at the end of the episode will be negative and hence the agent tries to finish

the episode soon. After training with the same hyperparameters as given in Table 5.1

and changing the reward function as :

𝑟1 = 2 exp
( −𝑑2

𝑐

12.5

)
− 1 + 2

𝑟2 = 1.3 exp (−10 |𝜒𝑒 |) − 0.3 + 2

𝑟3 = 0

(6.1)

The rewards 𝑟1 and 𝑟2 are now positive at each time step and hence the overall reward at

each timestep will become positive. Fig. 6.3 shows the results of the modified reward
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(a) For wind speed 𝑉𝑤 = 6𝑈

(b) For wind speed 𝑉𝑤 = 9𝑈

Figure 6.1: Relative cross track error for straight line maneuver with wind speeds
𝑉𝑤 = 6, 9
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Figure 6.2: Without yaw rate
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Figure 6.3: Modified Rewards

function on the training. It can be seen that the agent is still reaching the destination

to get a +100 reward, but the path followed by the agent has become large as the agent

want to accumulate more positive reward. Since the agent always has a velocity (due to

constant propeller r.p.m) the agent can not stay at a particular location and accumulate

a reward. Therefore the agent follows this zig-zag trajectory to spend more time steps

before reaching the destination and maximising the overall reward.

6.1.3 Effect of reward 𝑟3

The inclusion of the term −𝑑𝑤𝑝

4 in the reward function (4.7) is intended to make the

overall reward negative, which will encourage the agent to try to reach the destination as

quickly as possible. The restrictions on the values of 𝑟1 and 𝑟2 are in place to ensure that

the agent focuses on reducing the distance to the goal when it is far away but shifts its

attention to the course angle error and cross-track error as it gets closer to the destination.
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Figure 6.4: Constant Reward 𝑟3

This is intended to produce a smooth trajectory that gradually decreases these errors as

the distance to the goal decreases. It has been found that the specific values chosen for

these terms, including the factor of 4 in the distance term, result in a path that effectively

balances the importance of these different factors. Other values for these terms may

produce different trade-offs between distance and angle errors.

Both 𝑟1 and 𝑟2 are bounded to ensure that far away from the goal, the distance should

be the governing factor. Training the model with a constant negative 𝑟3 does not give a

smooth curve as what we get if there is a dependence of distance to the waypoint. Fig.

6.4 shows the trajectory of the agent with constant negative reward. The hyperparameters

are the same as described in Table 5.1 along with the same seed number.

6.2 STATIC OBSTACLE AVOIDANCE

In conclusion, this study trained and evaluated a model for obstacle avoidance and

waypoint tracking using DQN and DDPG controllers. The controllers were successful in
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performing these tasks, and the model’s robustness was tested by placing an obstacle

in the path of the ship. The comparison of the controllers in terms of RMSE and CE

showed that DDPG outperformed DQN in cases where the obstacle was in between the

line joining the waypoints, while DQN performed better in cases where the obstacle was

in the path of the ship, especially when the obstacle was small. Overall, the difference

in performance between the two controllers was not significant, and the study provides

insights for selecting an appropriate controller based on the obstacle’s size and position.

6.2.1 Hybrid Path Following and Obstacle Avoidance Architecture

During agent training with an obstacle present, the distance between the agent and the

obstacle was restricted to between 25% and 75% of the distance between the starting and

ending points. As a result, the agent was not trained when the obstacle was far away and

was unable to optimize its path during training. Although the likelihood of a collision

with the obstacle was low, the trajectory for the path following was not optimized, as

illustrated in Fig. 6.5.

The agent can successfully reach the destination in certain scenarios if it detects

obstacles at specific distances during training. However, this approach is not practical for

generalizing to different environments, as obstacles can be located anywhere and training

for each trajectory would be computationally expensive. Therefore, a hybrid architecture

is proposed that incorporates both the trained network for the path following described in

Sec. 5.3 and the obstacle avoidance network presented in Sec. 5.4.2. The path-following

network will be utilized unless an obstacle with CR>0 is detected within a 5L distance

from the ship. Fig. 6.6 shows the DDPG agent was successful in reaching the destination

quite effectively.
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Figure 6.5: Agent unable to reach destination
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CHAPTER 7

CONCLUSION AND FUTURE STUDIES

In conclusion, this research successfully developed a DRL-based controller for

autonomous ship navigation, showcasing its effectiveness in path following, waypoint

tracking, and compensation for wind forces. The DRL controller’s performance was

verified through simulations and validated with experiments. A comparison with the

traditional PD controller revealed that the RL-based approach performed equally well or

even better in certain cases.

The study evaluated multiple DRL algorithms, including DQN, DDPG, and PPO, and

found them capable of effectively tracking waypoints and executing maneuvers in different

trajectories, even in the presence of external disturbances. The PPO controller generally

exhibited the least cross track error and controller effort.

The implications of the findings in the context of the maritime industry could be

significant. By exploring and developing RL-based path planning and navigation

methods for autonomous surface vehicles (ASVs), there is potential to improve the safety,

efficiency, and operational costs in maritime operations. RL algorithms that can effectively

handle complex and dynamic environments, adapt to changing conditions, and make

optimal decisions could enhance the autonomous capabilities of ASVs, leading to safer

and more efficient navigation. Moreover, the integration of RL with traditional methods

could provide a balance between established techniques and innovative approaches,

potentially improving the overall performance and practical applicability of autonomous

navigation systems in the maritime industry.

Additionally, the research explored the training of DQN and DDPG controllers for

handling both static and dynamic obstacles, yielding promising results. The DDPG



controller outperformed the DQN controller for static obstacles, while both controllers

successfully avoided dynamic obstacles. Moreover, a hybrid model utilizing multiple

neural networks was introduced, allowing for effective obstacle avoidance by dynamically

switching between networks based on obstacle location.

Future research endeavors may focus on integrating dynamic obstacles and training

reinforcement learning (RL) agents to adhere to Collision Regulations at Sea

(COLREGS), posing a more significant challenge. However, several specific challenges

and considerations arise when ensuring compliance with maritime regulations while

employing RL techniques. One critical challenge involves developing RL algorithms

that can effectively learn and encode the complex and context-dependent rules of

COLREGS. Striking the right balance between exploration and exploitation is another

challenge to ensure compliance without overly conservative behavior. Additionally, it is

vital to verify and validate RL-based systems’ adherence to COLREGS, demonstrating

their safety and reliability to regulatory authorities and stakeholders. Enhancing the

system can be achieved by conducting comparisons with traditional controllers that

utilize path planning algorithms. It is important to note that the current research

assumed static and dynamic obstacles with predetermined sizes and velocities. However,

real-world scenarios may involve encounters with obstacles of varying sizes and speeds.

Furthermore, the maximum rudder rate ( ¤𝛿𝑚𝑎𝑥) in the study is 5° per second, which may

overload the Steering Gear and require significant powering at full scale. To address this,

the rudder rate can be limited to 1.5 - 2.5° per second. Therefore, future studies should

encompass evaluating the RL agent’s performance under such diverse conditions.

To validate the practical applicability of the control algorithms, further steps involve

testing and verification on an actual unmanned surface vessel for collision avoidance.

This real-world experimentation will provide valuable insights into the RL agent’s

performance. Furthermore, while the simulations demonstrated satisfactory performance,

future research should also explore the behavior of the RL agent under additional
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environmental factors, such as currents and wave forces, to ensure its robustness and

reliability in diverse conditions.

Finally, there are potential limitations and risks associated with relying solely on RL-based

controllers for autonomous surface vehicles. A major concern is the lack of transparency

and interpretability in RL algorithms, which makes it challenging to comprehend and

clarify how the controller arrives at its decisions. This lack of understanding undermines

trust and poses obstacles in guaranteeing the system’s safety and dependability. Moreover,

RL-based controllers may exhibit subpar performance when confronted with uncommon

or novel scenarios that were not encountered during training, potentially resulting in

unpredictable behavior and safety risks. Furthermore, integrating DRL-based controllers

into existing maritime systems and ensuring compliance with regulatory frameworks

necessitates careful deliberation and adjustment.

To effectively address these risks, it is imperative to establish a comprehensive safety

framework that encompasses various measures. This framework should include rigorous

testing and validation procedures, incorporating diverse and realistic simulation

environments as well as extensive field trials. It is essential to integrate fail-safe

mechanisms, such as human override capabilities or backup systems, to handle critical

situations and ensure human intervention when necessary.

While RL-based controllers can bring significant benefits to autonomous surface vehicles

(ASVs), relying solely on them presents potential limitations and risks. One notable

limitation is the need for a substantial amount of training data and computational

resources, which may not be practical or feasible to acquire and utilize in real-time

scenarios. Additionally, RL algorithms can be sensitive to environmental changes

and system dynamics, making them susceptible to failures or suboptimal behavior in

unforeseen circumstances.

Furthermore, it is crucial to explore transfer learning techniques that leverage knowledge
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from related tasks to enhance the interpretability and explainability of the decision-making

process of the RL-based controllers. These research avenues are vital for advancing the

ongoing development and improvement of DRL-based controllers. As RL algorithms

become increasingly complex and autonomous, it is essential to address potential biases

and unintended consequences.

To mitigate biases, researchers are exploring techniques such as careful dataset curation,

fairness-aware reward shaping, and algorithmic transparency. Efforts are also being made

to develop explainable AI methods that provide insights into the decision-making process

of RL algorithms. Moreover, establishing robust regulatory frameworks, standards,

and guidelines for the deployment and operation of RL-based systems in the maritime

industry is crucial to ensure accountability and responsible use of these technologies.
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APPENDIX A

MAKING THE EPSILON GOES TO A CONSTANT
VALUE WHICH IS GREATER THAN 0

While training the DQN model in Sec. 3.2, the epsilon (exploration factor) goes to zero

at 5000 episodes, but in the DQN paper (Mnih et al. (2013)), the epsilon was constant for

the whole episodes. This also tried to see the difference between the two methods of

exploration and exploitation.

𝜖 =


1 − current episode number

5000 if 𝜖 ≥ 0.2

0.2 else
(A.1)

After using the same set of hyperparameters along with the same seed number, both agents

were compared against each other. The training losses and episode returns averaged over

100 episodes are shown in Fig. A.1. For comparing the model, we are calculating the

RMSE value of the cross-track error for different trajectories.

In the case of Deep Q-Networks (DQN), the choice of exploration strategy can have

a significant impact on the learning process. When the value of epsilon does not go

to zero, the agent is more likely to take random actions, which can help the agent to

Table A.1: Comparison of the DQN controller

Trajectory Original(𝜖 goes to 0) Modified(𝜖 goes to 0.2)
Circle (radius = 6L) 0.6095L 0.7142L
Circle (radius = 12L) 0.5395L 0.4632L

Ellipse 0.2969 0.344L
Eight 0.4393L 0.4557L

Ellipse (𝑉𝑤 = 6 and 𝛽𝑤 = 0°) 0.8456L 0.5640L
Eight(𝑉𝑤 = 6 and 𝛽𝑤 = 45°) 0.3941L 0.3485L



Figure A.1: Training loss and returns for DQN model
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Figure A.2: Path Following of the DQN model
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explore different states and learn from new experiences. This can be particularly useful

in environments with external disturbances, such as the presence of winds. In such

situations, the agent needs to be able to adapt to changes in the environment, and random

exploration can help it to do so. On the other hand, when the value of epsilon goes to zero

after a certain number of episodes, the agent relies more on its learned policy and takes

more deterministic actions. This can lead to better performance in calmer environments,

where the agent can exploit its learned policy more effectively. Ultimately, the choice of

exploration strategy will depend on the specific characteristics of the environment, and

a balance between exploration and exploitation needs to be struck to achieve optimal

performance.
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APPENDIX B

TUNING OF THE PD CONTROLLER

The comparison between the DQN controller and the PD controller with ILOS was

conducted, and the results showed that the DQN controller initially outperformed the PD

controller as shown in Sec. 5.2.3. However, before that the study used another set of

values of 𝐾𝑝 and 𝐾𝑑 set at 1.7 and 4.0, respectively. It can be seen from the Fig. B.1a

that the RL controller performance is similar to the PD controller with the root mean

square cross track error being marginally (4%) smaller for the DRL controller. Further

simulations were performed on an ellipse and eight trajectory and it was found that the

root mean square cross track error for PD controller is 5 times the corresponding value

from DRL controller in case of eight trajectories (Fig. B.1b). This same value is about 4

times for the ellipse trajectory (Fig. B.1c).

Overall, the results suggest that the choice of the controller may depend on the specific

trajectory and task at hand, and the PD controller can be tuned for specific trajectories to

achieve superior performance. Future studies can explore the optimization of controllers

for different trajectories and tasks to enhance performance further.



(a) Square Trajectory (RL: 𝑑𝑅𝑀𝑆𝐸 = 0.6693𝐿
PD: 𝑑𝑅𝑀𝑆𝐸 = 0.6959𝐿)

(b) Eight Trajectory (RL: 𝑑𝑅𝑀𝑆𝐸 = 0.369𝐿 PD: 𝑑𝑅𝑀𝑆𝐸 =

1.990𝐿)

(c) Ellipse Trajectory (RL: 𝑑𝑅𝑀𝑆𝐸 = 0.246𝐿 PD:
𝑑𝑅𝑀𝑆𝐸 = 1.019𝐿)

Figure B.1: Comparison of the path traversed by the model in PD controller and RL
controller in simulation
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APPENDIX C

HYBRID ARCHITECTURE OF DRL AND PD BASED
CONTROLLER

The control system for a vessel’s movement can be implemented using a hybrid architecture

of PD and DRL-based controller. This approach combines classical control theory and

reinforcement learning techniques. The PD controller is responsible for ensuring stable

and predictable movement when there are no obstacles. However, when the system

detects an obstacle nearby, the DRL controller takes over and uses a model-free approach

to learn how to navigate around the obstacle. This hybrid architecture has a faster output

speed compared to using just one controller. Although the PD controller is faster than the

RL controller in waypoint tracking (the computation speed for one control decision of

the RL based controller is 0.110 ms while for a PD controller is 0.0212 ms.), it requires

an online path planner (ex. Velocity Obstacle Method, Artificial Potential Field, A*

algorithm, etc) to handle obstacle avoidance, which consumes more computation power.

On the other hand, the RL controller can take observation state data and output control

actions needed to avoid obstacles. Once the obstacle is passed, the system switches back

to the PD controller. This hybrid architecture takes advantage of both PD control and

DRL, resulting in a more robust and adaptive control system capable of handling various

real-world scenarios. Fig. C.1 illustrates the plot for the hybrid architecture.
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Figure C.1: Hybrid architecture of PD and DRL controller
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