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A B S T R A C T

A majority of marine accidents that occur can be attributed to errors in human decisions. Through automation,
the occurrence of such incidents can be minimized. Therefore, automation in the marine industry has been
receiving increased attention in the recent years. This paper investigates the automation of the path following
action of a ship. A deep Q-learning approach is proposed to solve the path-following problem of a ship. This
method comes under the broader area of deep reinforcement learning (DRL) and is well suited for such tasks, as
it can learn to take optimal decisions through sufficient experience. This algorithm also balances the exploration
and the exploitation schemes of an agent operating in an environment. A three-degree-of-freedom (3-DOF)
dynamic model is adopted to describe the ship’s motion. The Krisco container ship (KCS) is chosen for this
study as it is a benchmark hull that is used in several studies and its hydrodynamic coefficients are readily
available for numerical modeling. Numerical simulations for the turning circle and zig-zag maneuver tests
are performed to verify the accuracy of the proposed dynamic model. A reinforcement learning (RL) agent is
trained to interact with this numerical model to achieve waypoint tracking. Finally, the proposed approach is
investigated not only by numerical simulations but also by model experiments using 1:75.5 scaled model.
1. Introduction

Human error accounts for roughly 80%–85% of all marine-related
accidents (Baker and McCafferty, 2005). These incidents put human
lives in danger and also have a potential to cause damage to the
environment. In addition, the owners of the ships involved in such
incidents also face significant financial losses. The recent Ever Given
incident in the Suez Canal, 2021 is just one such example, where the
vessel could not maintain its path under the influence of strong winds.
With the recent advancements in the artificial intelligence (AI) it is now
possible to explore automation solutions for the maritime industry to
reduce the occurrence of such incidents. The progress in AI technology,
particularly reinforcement learning (RL), now offers a new solution to
address the demands of ship path following and trajectory tracking.

In RL, agents are trained on a reward and penalty system. The agent
is rewarded for actions that allow the attainment of a goal and penal-
ized for actions that have detrimental effects. Through experience, the
agent seeks the optimal policy that consistently chooses actions leading
to higher rewards and avoids actions that lead to lower rewards. Such a
control approach falls under the class of data driven controllers where
no model of the system being controlled is needed. Rather the system
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dynamics and the appropriate control strategy is learned by the agent
as it tries to optimize its interaction with the system.

Traditional RL requires the storing of the action choosing policy
of the agent in the form of Q-tables. Q-tables document the expected
reward for a large table of scenarios covering all possible combinations
of discrete states that the agent can be in and the actions it can choose.
This table is updated at every time step when the agent moves to a new
state through a chosen action from previous state. The advancement
in the area of deep learning has given rise to deep reinforcement
learning (DRL) that incorporate neural networks to store the policy of
the agent (Mnih et al., 2013). This replacement of Q-tables by neural
networks allows for a more efficient storage of the policy and potential
application to more complex problems. While the traditional RL based
on Q-tables requires both state space and action space to be discrete,
with deep reinforcement learning it is now possible to explore solutions
for scenarios where the state space and action space may be discrete or
continuous (Perera et al., 2015).

Traditional autopilots use line of sight (LOS) guidance systems in
conjunction with proportional–integral–derivative (PID) controllers to
achieve waypoint tracking for path following (Lekkas and Fossen, 2012;
Moreira et al., 2007). Over this layer of controller is a typical path
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Nomenclature

𝛼𝑅 Effective inflow angle to rudder
𝛽 Drift angle
𝛽𝑤 Direction of wind with respect to 𝑋-axis of

GCS
𝜒𝑒 Course angle error
𝛿 Actual rudder angle
𝛿𝑐 Commanded rudder angle
𝑒̇ Rate of change of heading error
𝛿̇ Rudder rate
𝛿̇𝑚𝑎𝑥 Maximum rudder rate
𝜓̇𝑑 Rate of change of desired heading angle
𝜖 Probability with which the RL agent takes a

random action
𝜂 Ratio of propeller diameter to the rudder

height
𝛾𝑅 Flow straightening factor of hull
𝛾𝑤 Relative wind angle with respect to ship
𝜅 An experimental constant for expressing 𝑢𝑅
𝜋 Policy of Markov Decision Process
𝜓 Current heading angle
𝜓𝑑𝑒𝑠𝑖𝑟𝑒𝑑 Desired heading angle
𝜌 Density of water
𝜌𝑎 Density of air
𝜃 Weight and biases of neural network
𝜀 Ratio of wake fraction at propeller and

rudder positions
𝑎 Action of Markov Decision Process
𝑎0 Constant curve fitting parameter for deter-

mining propeller thrust coefficient
𝑎1 Linear curve fitting parameter for determin-

ing propeller thrust coefficient
𝑎2 Quadratic curve fitting parameter for deter-

mining propeller thrust coefficient
𝑎𝐻 Rudder force increase factor
𝐴𝑅 Rudder Area
𝐴𝑥 Lateral projected areas of the hull
𝐴𝑦 Longitudinal projected areas of the hull
𝐵 Beam of the vessel
𝐶𝑤𝜓 Yaw wind coefficient
𝐶𝑤𝑥 Surge wind coefficient
𝐶𝑤𝑦 Sway wind coefficient
𝑑 Depth moulded
𝐷𝑝 Propeller diameter
𝑑𝑐 Cross track error
𝑑𝑒𝑚 Draft
𝑑𝑤𝑝 Distance to destination waypoint
𝑒 Heading error
𝑓𝛼 Rudder lift gradient coefficient
𝐽 Advance coefficient
𝐾𝑑 Derivative gain
𝐾𝑝 Proportional gain
𝐾𝑇 Propeller thrust coefficient
𝐿 Length between perpendiculars
𝐿𝑂𝐴 Length overall

planning algorithm that dictates the waypoints to be followed and
also specifies changes in path in the presence of static and dynamic
obstacles. Dynamic path planning is still a significant challenge in terms
2

𝑙𝑅 Correction of flow straightening factor to
yaw rate

𝑁 External yaw moment
𝑛 Propeller revolution rate
𝑁𝐻 Hull hydrodynamic yaw moment
𝑁𝑅 Yaw moment due to rudder
𝑅 Cumulative sum of reward at end of episode
𝑟 Yaw rate
𝑟1, 𝑟2, 𝑟3 Rewards associated with cross-track error,

course angle error and distance to goal
𝑠 Observation state of Markov Decision Pro-

cess
𝑡 Thrust deduction factor
𝑇𝑅 Rudder time constant
𝑡𝑅 Steering resistance deduction factor
𝑈 Design speed
𝑢 Surge velocity
𝑢𝑟𝑤, 𝑣𝑟𝑤 Velocity components of the ship relative to

the wind
𝑈𝑅 Rudder inflow velocity
𝑢𝑅 Longitudinal inflow velocity component to

rudder
𝑈𝑤𝑟 Relative wind velocity
𝑣 Sway velocity
𝑣𝑅 Lateral inflow velocity component to rudder
𝑉𝑤 Velocity of wind
𝑤 Effective wake fraction
𝑊𝜙 Yaw wind moment
𝑊𝑥 Surge wind force
𝑊𝑦 Sway wind force
𝑋 External surge force
𝑥, 𝑦 Coordinate of current position of ship in

GCS
𝑥𝐺 Longitudinal center of gravity of ship (LCG)
𝑥𝑖, 𝑦𝑖 Coordinate of initial position of ship in GCS
𝑥𝑔 , 𝑦𝑔 Coordinate of goal/next waypoint in GCS
𝑋𝐻 Hull hydrodynamic surge force
𝑥𝐻 Longitudinal coordinate of acting point

of the additional lateral force component
induced by steering

𝑋𝑃 Surge force due to propeller
𝑋𝑅 Surge force due to rudder
𝑥𝑅 Location of the rudder with respect to

midship
𝑌 External sway force
𝑌𝐻 Hull hydrodynamic sway force
𝑌𝑅 Sway force due to rudder

of robustness as well as with respect to computational power needed to
perform it in real time. With the advent of AI based control strategies,
these two functions of control and path planning can be achieved with a
single controller that does not need to perform significant computations
in real time. This has already been shown to be promising for certain
applications like active heave compensation (Zinage and Somayajula,
2021).

Several studies have started investigating the application of RL
methods for path planning. Wang et al. (2018) used the Q-learning
algorithm and demonstrated that the trained agent is successfully able
to plan the path and reached the destination while avoiding the static
obstacles. However, the study did not consider the dynamics of the
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vessel and was limited to planning a path that avoided static obsta-
cles. Shen et al. (2019) used deep Q learning algorithm for collision
avoidance of multiple ships and demonstrated that three ships in simu-
lations effectively avoid each other in a restricted space. The dynamics
of ships in simulations was taken to be governed by the Nomoto’s first
order model. Later these results were validated through experiments
in a rectangular basin. The study showed that the vessels were able to
effectively avoid each other in a restricted basin, but it was also seen
that the waypoints could not be effectively tracked. Ability to track
waypoints without the presence of obstacles was not investigated in
the study. Sivaraj et al. (2022) developed a Deep Q-network (DQN) for
path following and heading control of ship in calm water and waves
for a KVLCC2 tanker. This study relied on training different agents
for tracking different headings. Chen et al. (2019) developed a Q-
learning based model using Nomoto’s first order equation to implement
a practical path following algorithm taking into account the high inertia
of under-actuated cargo ships. The study showed that the Q-learning
based model outperforms RRTs (Rapidly-exploring random tree) and
A* with shorter path length and smoother turns. Woo et al. (2019)
trained a DDPG (Deep Deterministic Policy Gradient) based steering
controller that was used in conjunction with a vector field guidance
law to achieve path following. The policy at different levels of training
were compared in simulations and also through experiments on an
unmanned surface vehicle (WAM-V). However, the performance of the
steering controller was not compared with any of the traditional control
approaches. Martinsen and Lekkas (2018) trained a DDPG model for
straight line path following and used transfer learning to follow curve
paths for three different vessels. The effectiveness of the developed
controllers is demonstrated through simulations. It was shown that DRL
based guidance could accumulate better rewards than the traditional
LOS based guidance. Zhou et al. (2019) used a deep Q-network (DQN)
for path planning of a single USV and USV formation. Being focused
on path planning alone, the study focused on kinematics of the vessels
rather than a dynamic model. It was shown through simulations that
the developed method could effectively avoid collision with static
obstacles while maintaining a formation between three USVs.

Subsequently, several researches have also tried to combine path
planning along with COLREGs (Convention on the International Reg-
ulations for Preventing Collisions at Sea) compliant behavior for au-
tonomous ships. Guo et al. (2020) implemented a DDPG based path
planning agent to choose a continuous actions of rudder angle and
speed, for autonomous path planning compliant with COLREGs. How-
ever, the details of the dynamics of the vessel used for training were
not provided. Artificial potential field (APF) in conjunction with DDPG
method is explored and the study reported that this method converged
faster and required fewer training episodes and lesser time. Shen and
Guo (2016) used an actor–critic algorithm for path-following. The
reward functions in the study are based on the error calculated with re-
spect to a reference course. Later they also extended their method to use
limiting lines and navigational polygons to prevent ship collisions (Shen
et al., 2019). Layek et al. (2017) compared DDPG and NAF (Normalized
Advantage Function) based models, both outperforming random search
based control when the ship tries to pass through a specified gate, with
random initial orientations. The study focuses on the kinematics of the
vessel and ignores the dynamics in the simulation. Zhao et al. (2019)
developed a PPO (Proximal Policy Optimisation) algorithm to navigate
a ship simulated by the 3-DOF dynamic model using LOS guidance
system. The study also compared the DRL controller against a tradi-
tional PID controller and concluded that the RL controller resulted in
a smaller cross track error. Heiberg et al. (2022) also developed a PPO
algorithm for path following and obstacle avoidance using collision
risk theory. Zhao and Roh (2019) also proposed multi-ship collision
avoidance based on DRL by categorizing the target ships based on the
region in which they are present with reference to the autonomous ship.
3

It was demonstrated that the ship can follow some of the COLREG rules.
Table 1
KCS ship parameters.
Ship parameter Value

Length between perpendiculars (𝐿) 230m
Length overall (𝐿𝑂𝐴) 232.5m
Depth moulded (𝑑) 19m
Beam (𝐵) 32.2m
Draft (𝑑𝑒𝑚) 10.8m
Displacement 53330.75 tons
LCG (𝑥𝐺) −3.408m
Radius of gyration 57.5m
Design speed (𝑈) 12.347m∕s

Most of the studies have focused on application of DRL to obstacle
avoidance and path planning problems and very few have attempted to
study the ability of DRL based methods to undertake path following and
compare them with traditional methods. Particularly, implementation
in practical experiments are scarce. There is still some way to go before
RL based controllers can be seamlessly integrated into practice because
the dynamics in training is usually simplified in simulations and envi-
ronmental forces are neglected (Cui et al., 2017). Therefore, this study
explores the development of a DQN based controller for path following
task of a ship whose dynamics is defined by a strongly non-linear
model, and investigates its performance in the presence of significant
environmental forces. The simulated results are also validated against
field experiments.

The rest of the paper is organized as follows. Section 2 deals with
the dynamics of the ship. The non-linear equations of motions and
the simulated maneuvering tests are discussed in detail. Section 3
introduces the basics of reinforcement learning, Q-learning algorithm
and the DQN algorithm. Section 4 illustrates on how the algorithm
mentioned in Section 3 is applied to the problem of ship path following
problem. Section 5 describes the results obtained and further analyzes
the performance of the DQN agent by evaluating various maneuvers.
Section 6 describes the experimental validation of the RL agent trained
in simulations. Section 7 discusses modeling wind forces and analysis
of path following in the presence of wind. Based on the results, the
salient features of the DRL controller are highlighted in Section 8. This
section also compares the performance of RL agent against a traditional
PD controller. Finally, Section 9 summarizes the results and discussion
of this study.

2. Ship dynamic model

The KCS vessel is chosen for running numerical simulations and
evaluating the control algorithms used in this research. The ship dy-
namics are mathematically modeled with help of the MMG (Maneu-
vering Modeling Group) model (Yasukawa and Yoshimura, 2015). The
3-DOF non-linear equations of motion are used to solve for ship maneu-
vering motions including surge, sway and yaw motions. The equations
of motion are solved progressively at each time step as an initial value
problem using a Runge–Kutta implicit solver. The commanded rudder
angle 𝛿𝑐 is provided as an input at each time step. The particulars of
the KCS vessel used for simulating the ship dynamics are provided in
Table 1.

Two coordinate systems are defined to track the vessel. The first
system is a global coordinate system (GCS) that is an earth fixed
coordinate frame with its 𝑧-axis pointed down. The second is a body
coordinate system (BCS) that is fixed to the body and moves with the
vessel. The origin of the BCS is located at the intersection of midship,
centerline and waterline of the vessel with its 𝑥-axis pointed towards
the bow, 𝑦-axis pointed towards starboard and 𝑧-axis pointed towards
the keel of the vessel. Both these coordinate frames are shown in Fig. 1.
The heading angle 𝜓 is defined as the angle between the x-axes of
the GCS and BCS frames. The position and orientation of the vessel
is denoted by 𝜼 = [𝑥 , 𝑦 , 𝜓]𝑇 where 𝑥 and 𝑦 denote the position of
𝑜 𝑜 𝑜 𝑜
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Fig. 1. Representation of ship kinematic variables.

he origin of BCS expressed in GCS. The velocity vector of the body in
CS is given by 𝐕 = [𝑢, 𝑣, 𝑟]𝑇 where 𝑢, 𝑣 and 𝑟 represent surge, sway
nd yaw velocities of the vessel respectively and are expressed in BCS
rame. The ship’s speed is given by 𝑈 =

√

𝑢2 + 𝑣2. The drift angle
𝛽) is defined as the angle between the total velocity vector and the
ongitudinal direction of ship and is given by 𝛽 = tan−1 (−𝑣∕𝑢). The

kinematics of ship motion are represented by (1)

𝜼̇ = [𝑅(𝜓)]𝐕 (1)

here [𝑅(𝜓)] represents the rotation matrix given by

𝑅(𝜓)] =
⎡

⎢

⎢

⎣

cos(𝜓) − sin(𝜓) 0
sin(𝜓) cos(𝜓) 0

0 0 1

⎤

⎥

⎥

⎦

(2)

Any vector in BCS when pre-multiplied by the rotation matrix will
esult in the same vector expressed in GCS.

The MMG model used for simulating ship maneuvering (Yoshimura
nd Masumoto, 2012) is shown in (3).

𝑚 + 𝑚𝑥)𝑢̇ − 𝑚𝑣𝑟 − 𝑚𝑥𝐺𝑟2 = 𝑋

𝑚 + 𝑚𝑦)𝑣̇ + 𝑚𝑥𝐺 𝑟̇ + 𝑚𝑢𝑟 = 𝑌

𝐼𝑧𝑧 + 𝐽𝑧𝑧)𝑟̇ + 𝑚𝑥𝐺 𝑣̇ + 𝑚𝑥𝐺𝑢𝑟 = 𝑁

(3)

In (3), 𝑚 is the mass of the KCS ship, 𝐼𝑧𝑧 is the second mass moment
f inertia in yaw and 𝑚𝑥, 𝑚𝑦 and 𝐽𝑧𝑧 are the surge and sway added
asses and yaw added mass moment of inertia respectively. 𝑋, 𝑌 and
represent the external surge, sway forces and yaw moment acting on

he vessel expressed in BCS coordinate frame.
The surge and sway equations are non-dimensionalized by dividing

oth sides of the surge and sway equations by 𝜌
2𝑈

2𝐿𝑑𝑒𝑚 where 𝜌
s the density of sea water, 𝐿 is the length of the vessel, 𝑈 is the
esign speed of the vessel and 𝑑𝑒𝑚 is the draft of the vessel. Similarly,
he yaw equation of motion is non-dimensionalized by divided both
ides by 𝜌

2𝑈
2𝐿2𝑑𝑒𝑚. This non-dimensionalization is consistent with the

prime-II system of normalization described by Fossen (1999). The non-
dimensionalizing factors for various quantities is shown in Table 2. The
resulting non-dimensional equations of motion are shown in (4)

(𝑚′ + 𝑚′
𝑥)𝑢̇

′ − 𝑚′𝑣′𝑟′ − 𝑚′𝑥′𝐺𝑟
′2 = 𝑋′

(𝑚′ + 𝑚′
𝑦)𝑣̇

′ + 𝑚′𝑥′𝐺 𝑟̇
′ + 𝑚′𝑢′𝑟′ = 𝑌 ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

(4)
4

(𝐼𝑧𝑧 + 𝐽𝑧𝑧)𝑟̇ + 𝑚 𝑥𝐺 𝑣̇ + 𝑚 𝑥𝐺𝑢 𝑟 = 𝑁 f
Table 2
Prime-II system of normalization.

Parameter Prime-II system

Length 𝐿
Velocity 𝑈
Angular velocity 𝑈∕𝐿
Time 𝐿∕𝑈
Acceleration 𝑈 2∕𝐿
Angular acceleration 𝑈 2∕𝐿2

Mass 0.5𝜌𝐿2𝑑𝑒𝑚
Force 0.5𝜌𝑈 2𝐿𝑑𝑒𝑚
Moment 0.5𝜌𝑈 2𝐿2𝑑𝑒𝑚

Table 3
Ship parameters.

Parameter Non-dimensional value

Surge added mass (𝑚𝑥) 0.006269
Sway added mass (𝑚𝑦) 0.155164
Yaw added mass moment (𝐽𝑧𝑧) 0.009268
Yaw mass moment of inertia (𝐼𝑧𝑧) 0.011432
Mass of the vessel (𝑚) 0.182280

where (.)′ denotes a non-dimensionalized quantity with the
non-dimensional factor as specified in Table 2. For simplicity in no-
tation, the prime is avoided in the rest of the paper and all quantities
presented henceforth are assumed to be non-dimensionalized according
to the factors shown in Table 2. The non-dimensional mass and added
mass terms are specified in Table 3.

The non-dimensional external forces and moments can be decom-
posed into components due to hull, propeller and rudder as shown in
(5).

𝑋 = 𝑋𝐻 +𝑋𝑅 +𝑋𝑃

𝑌 = 𝑌𝐻 + 𝑌𝑅
𝑁 = 𝑁𝐻 +𝑁𝑅

(5)

here the subscripts 𝐻 , 𝑅 and 𝑃 represent the hull, rudder, and
ropeller effects respectively.

.1. Forces due to hull

The external fluid forces and moments acting on the hull can be
xpressed as a Taylor series in 𝑢, 𝛽 and 𝑟 as shown in (6). The non-

dimensional hull hydrodynamic coefficients for the KCS vessel used
in (6) were obtained from Yoshimura and Masumoto (2012) and are
reported in Table 4. However, it is also possible to determine these coef-
ficients through system identification methods applied to data collected
from free running ship models (Vijay and Somayajula, 2022).

𝑋𝐻 = 𝑋0𝑢
2 +𝑋𝛽𝛽𝛽

2 + (𝑋𝛽𝑟 − 𝑚𝑦)𝛽𝑟

+ 𝑋𝑟𝑟𝑟
2 +𝑋𝛽𝛽𝛽𝛽𝛽

4

𝑌𝐻 = 𝑌𝛽𝛽 + (𝑌𝑟 − 𝑚𝑥)𝑟 + 𝑌𝛽𝛽𝛽𝛽3 + 𝑌𝛽𝛽𝑟𝛽2𝑟

+ 𝑌𝛽𝑟𝑟𝛽𝑟
2 + 𝑌𝑟𝑟𝑟𝑟3

𝐻 = 𝑁𝛽𝛽 +𝑁𝑟𝑟 +𝑁𝛽𝛽𝛽𝛽
3 +𝑁𝛽𝛽𝑟𝛽

2𝑟

+ 𝑁𝛽𝑟𝑟𝛽𝑟
2 +𝑁𝑟𝑟𝑟𝑟

3

(6)

.2. Forces due to propeller

The non-dimensional propeller thrust acting in the surge direction
an be calculated using (7)

𝑝 = 2(1 − 𝑡)𝐾𝑇𝐷𝑝
4𝑛2 𝐿

𝑑𝑒𝑚
(7)

where 𝐷𝑝 is the propeller diameter, 𝑛 is the propeller revolution rate,
𝑇 is the propeller thrust coefficient and 𝑡 is the thrust deduction
actor. The thrust deduction factor 𝑡 is included to capture the effect of



Ocean Engineering 273 (2023) 113937R. Deraj et al.

i
t

𝐾

𝐽

r
c
t

2

t
i
e

Table 4
Ship hydrodynamic coefficients.
Parameter Non-dimensional value

𝑋0 −0.0167
𝑋𝛽𝛽 −0.0549
𝑋𝛽𝑟 − 𝑚𝑦 −0.1084
𝑋𝑟𝑟 −0.0120
𝑋𝛽𝛽𝛽𝛽 −0.0417
𝑌𝛽 0.2252
𝑌𝑟 − 𝑚𝑥 0.0398
𝑌𝛽𝛽𝛽 1.7179
𝑌𝛽𝛽𝑟 −0.4832
𝑌𝛽𝑟𝑟 0.8341
𝑌𝑟𝑟𝑟 −0.0050
𝑁𝛽 0.1111
𝑁𝑟 −0.0465
𝑁𝛽𝛽𝛽 0.1752
𝑁𝛽𝛽𝑟 −0.6168
𝑁𝛽𝑟𝑟 0.0512
𝑁𝑟𝑟𝑟 −0.0387

Table 5
Propeller parameters.

Parameter Non-dimensional value

𝑡 0.207
𝐷𝑝 0.03435
𝑛 35.86
𝑤 0.355
𝑎0 0.5228
𝑎1 −0.4390
𝑎2 −0.0609

additional resistance observed when the propeller is operating behind
the hull as compared to bare hull resistance. The thrust coefficient 𝐾𝑇
s obtained by curve fitting the propeller open water test data and for
he KCS vessel is given by (8)

𝑇 = 𝑎0 + 𝑎1𝐽 + 𝑎2𝐽 2 (8)

Here 𝐽 represents the advance coefficient and is given by (9)

=
𝑢(1 −𝑤)
𝑛𝐷𝑝

(9)

where 𝑤 represents the effective wake fraction. The effective wake
fraction 𝑤 accounts for the reduction in inflow fluid velocity to the pro-
peller when operating in the wake of the hull. The values of propeller
parameters are specified in Table 5.

2.3. Forces due to rudder

The surge and sway forces and the yaw moment due to the rudder
are given by

𝑋𝑅 = −(1 − 𝑡𝑅)𝐹𝑁𝑠𝑖𝑛𝛿

𝑌𝑅 = −(1 + 𝑎𝐻 )𝐹𝑁 cos 𝛿

𝑁𝑅 = −(𝑥𝑅 + 𝑎𝐻𝑥𝐻 )𝐹𝑁 cos 𝛿

(10)

where 𝛿 is the instantaneous rudder angle, 𝑡𝑅 is the steering resistance
deduction factor, 𝑥𝑅 is the non-dimensional location of the rudder with
respect to midship and 𝑥𝐻 is the non-dimensional position of the point
where additional lateral force acts. The values of these parameters for
the KCS vessel have been taken from Yoshimura and Masumoto (2012)
and are given in Table 6. 𝐹𝑁 is the non-dimensional rudder normal
force and can be calculated as shown in (11)

𝐹𝑁 =
𝐴𝑅
𝐿𝑑𝑒𝑚

𝑓𝛼𝑈
2
𝑅 sin 𝛼𝑅

𝛼𝑅 = 𝛿 − tan−1
−𝑣𝑅
𝑢𝑅

(11)

where 𝐴𝑅 is the rudder area, 𝑈𝑅 is the non-dimensional rudder inflow
velocity and 𝑓 is the gradient of rudder lift coefficients. 𝑓 can be
5

𝛼 𝛼 t
Table 6
Rudder force parameters.

Parameter Value
𝐴𝑅
𝐿𝑑𝑒𝑚

0.0182
𝑡𝑅 0.258
𝑎𝐻 0.361
𝑥𝐻 −0.436
𝑥𝑅 −0.5
𝑙𝑅 −0.755
𝛾𝑅 (starboard) 0.492
𝛾𝑅 (port) 0.338
𝜅 0.633
𝜀 0.956
𝜆 2.164
𝜂 0.7979

approximated as a function of rudder aspect ratio (𝜆), as shown in (12).

𝑓𝛼 = 6.13𝜆
(2.25 + 𝜆)

(12)

𝑣𝑅 and 𝑢𝑅 in (11) are the lateral and in-line velocity components
(𝑈𝑅 =

√

𝑣2𝑅 + 𝑢2𝑅) and can be computed as shown in (13).

𝑢𝑅 = 𝜀(1 −𝑤)

×

√

√

√

√

√

√𝜂
⎛

⎜

⎜

⎝

1 + 𝜅
⎛

⎜

⎜

⎝

√

(

1 + 8
𝐾𝑇
𝜋𝐽 2

)

− 1
⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

2

+ (1 − 𝜂)

𝑣𝑅 = 𝛾𝑅(𝑣 + 𝑟𝑙𝑅)

(13)

In (13), 𝑙𝑅 is the correction of flow straightening factor to yaw-
ate, 𝛾𝑅 is the flow straightening factor of hull and the value for these
onstants are given in Table 6. 𝜂 is the ratio of propeller diameter
o the rudder height

(

𝜂 = 𝐷𝑝
ℎ𝑅

)

, 𝜀 and 𝜅 are constants identified from
experiments performed by Yoshimura and Masumoto (2012).

2.4. Rudder angle variation

In practical scenarios the rudder angle cannot be varied instanta-
neously as this would mean that the rudder rate 𝛿̇ would be very large.
In this study, the actual rudder angle 𝛿 is governed by a first order
equation as shown in (14) where 𝛿𝑐 denotes the commanded rudder
angle. The actual rudder angle 𝛿 evolves slowly for a step change in
commanded rudder angle 𝛿𝑐 . A lower value of 𝑇𝑅 leads to a faster
response time.

𝑇𝑅𝛿̇ + 𝛿 = 𝛿𝑐 (14)

In addition, the rudder rate 𝛿̇ is also saturated at 𝛿̇𝑚𝑎𝑥. So the
rudder-rate is given by:

𝛿̇ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛿𝑐−𝛿
𝑇𝑅

if |

𝛿𝑐−𝛿
𝑇𝑅

| ≤ 𝛿̇𝑚𝑎𝑥

𝛿̇𝑚𝑎𝑥 if 𝛿𝑐−𝛿
𝑇𝑅

> 𝛿̇𝑚𝑎𝑥

−𝛿̇𝑚𝑎𝑥 if 𝛿𝑐−𝛿
𝑇𝑅

< −𝛿̇𝑚𝑎𝑥

(15)

In this study, the non-dimensional rudder time-constant 𝑇𝑅 is taken
as 0.1 and 𝛿̇𝑚𝑎𝑥 is chosen as 5◦ per second for the full scale ship.

.5. Turning circle maneuver

The turning circle maneuver is one of the standard tests performed
o check the maneuvering capabilities of a vessel. In this test, the ship
s initially oriented at heading 𝜓 = 0◦ and a constant 35◦ rudder is
xecuted, either towards starboard or port. The steady turning diame-
ers observed from the numerical model developed in this study were
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Fig. 2. Starboard 35◦ turning circle.

observed to be 2.97𝐿 and 2.74𝐿 for starboard and port side turning
circles respectively. The port and starboard turning circles differ due
to asymmetry in flow through the rudder. The simulated results were
compared with its corresponding experimental turning circle tests for
the same vessel and are shown in Figs. 2 and 3. The experimental
data was obtained from SIMMAN 2021 workshop (experiments were
performed by MARIN) and by digitizing plots from Yoshimura and
Masumoto (2012). While the experiments in Yoshimura and Masumoto
(2012) were performed at 1:75.5 scale, the MARIN experiments for
SIMMAN 2021 workshop were conducted at 1:37.89 scale.

It can be seen that the steady turning diameter from the experiments
and simulations of Yoshimura and Masumoto (2012) agree fairly well
with the results of this study. The minor differences observed in the
simulations of both studies can be partly attributed to digitization
errors as the plots in Yoshimura and Masumoto (2012) were not of
high resolution. In addition the inclusion of smooth rudder variation
through a first order system as described above was not considered
by Yoshimura and Masumoto (2012) and might also have contributed
to the difference.

It is seen that the steady turning diameter observed from SIM-
MAN 2021 experiments is smaller than the values predicted from
both (Yoshimura and Masumoto, 2012) and this study. It is well known
that the lift and drag generated by an airfoil section depend strongly
on the Reynolds number. Since Froude scaling is followed when per-
forming scaled model experiments, the Reynolds number of the flow
over the rudder will be significantly different as the scale ratio varies.
Therefore, the rudder forces will not be dynamically similar as the scale
ratios change. The difference between the experimental turning circle
maneuvers of SIMMAN 2021 workshop and Yoshimura and Masumoto
(2012) can be attributed to these scale effects.

2.6. Zig-Zag test

In the Zigzag maneuver test, the rudder angle 𝛿 is kept at a constant
value say 𝛿0 until the ship’s heading angle reaches the specified value
𝜓0. When heading 𝜓 reaches 𝜓0, the rudder is reversed to −𝛿0. Now
the rudder is held constant at −𝛿0 until the ship’s heading reaches
−𝜓0, when the rudder direction is reversed again. In 20◦-20◦ zigzag
maneuver the 𝛿 and 𝜓 values are both 20◦. Zig-zag maneuver helps us
6

0 0
Fig. 3. Port 35◦ turning circle.

Fig. 4. Rudder angle (𝛿) and ship’s heading (𝜓).

to understand the course-changing ability of the ship (how fast the ship
can change its heading on command). One of the crucial quantities to
note in this maneuver is the overshoot angle. It is the maximum heading
reached by the ship beyond 𝜓0 after the rudder change is applied. A low
overshoot angle indicates better controllability of the ship.

Fig. 4 shows the ship’s position during the simulated zigzag maneu-
ver compared with the SIMMAN 2021 experimental data for the same
test. While the experiment on a free running model allows the vessel
to heel upon the application of rudder, this effect is not incorporated
in the simulations, which are restricted to three degrees of freedom.
This and the scale effects are believed to be some of the reasons for the
differences between the simulations and the experiments. Fig. 5 shows
the variation of the ship’s heading and the rudder angle with time. The
maximum ship heading was observed to be 30.53◦ which indicates an
overshoot of 10.53◦.

3. Deep-Q learning

RL is a machine learning technique which involves intelligent agents
that learn to take optimal decisions by interacting with an environment
with a goal of accumulating rewards. The agent can try a set of actions
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Fig. 5. Rudder angle (𝛿) and ship’s heading (𝜓).

t any certain state and it learns with experience (Sutton and Barto,
018). Choosing a particular action from a particular state will result
n rewards that can be positive or negative. The agent progressively
ets better at the task by trial and error mechanism with the rewards
s feedback. The agent starts the episode at a specified state then
xecutes a series of actions moving through various states till the
pisode is terminated. An episode is terminated either when the agent
as successfully reached the goal state or when a terminating condition
usually denoting failure) is satisfied. The motive of the agent is to
aximize the return obtained in an episode defined as the cumulative

eward obtained in that episode.
The current state of the agent depends only on the previous state

nd the action chosen at the previous state. This kind of an environment
s called a Markov decision process (MDP). Typical ship dynamics
nvolves consideration of retardation functions that model the memory
f the fluid. However, in a calm water condition this can be relaxed
nd can be represented as an MDP, which makes it a suitable learning
nvironment for the RL framework.

.1. Q-learning

Q-Learning is a fundamental RL algorithm where every action ex-
cutable at a particular state has a value associated with it called the
-value. The Q-value for any action–state pair represented as 𝑄(𝑠, 𝑎)., is

he expected cumulative reward gained by the agent by performing an
ction 𝑎 at a certain state 𝑠 and choosing optimal actions thereon. The
gent learns the Q-values through experience from numerous trials.

A major limitation of Q-learning is that it only works when the
ction space and the state space are discrete, which is not so for most
eal-life problems. The number of Q-values needed will be large if a
ontinuous action space is discretized finely. To overcome this problem,
he Q-table that keeps track of the Q-values for every state–action pair
n Q-learning can be substituted by a function approximator. Artificial
eural networks (ANN) are commonly used as function approximators
ue to their powerful representational capacity and this has led to a
ew set of RL algorithms called deep reinforcement learning (DRL).

.2. Deep Q-network

In deep Q-learning, the state variables are input to an ANN known
s DQN (Deep Q-network) which outputs the Q-values for each cor-
esponding action. Fig. 6 illustrates this behavior. Unlike Q-learning,
QN can be used for a continuous state space as well. Just like
-learning, the action which corresponds to the highest Q-value is ex-
cuted. Since the Q-value is now a function of the parameters (weights
nd biases) of the network represented by 𝜃, the Q-value can be
epresented as 𝑄(𝑠, 𝑎; 𝜃).
7

The network parameters have to be updated after every episode to
mprove the Q-values output by the network, and thus improving the
olicy. Network parameters are updated by backpropagation with the
elp of an optimizer that tries to minimize the loss function given by
16).

(𝜃) = E𝑠,𝑎,𝑟,𝑠′
[

(𝑦 −𝑄(𝑠, 𝑎; 𝜃))2
]

(16)

𝑠,𝑎,𝑟,𝑠′ [.] represents the expected value over all the possible state
ransitions (𝑠, 𝑎, 𝑟, 𝑠′). Each state transition (𝑠, 𝑎, 𝑟, 𝑠′) denotes a transition
f the agent from state 𝑠 to 𝑠′ by taking an action 𝑎 and earning a
eward 𝑟 in the process. Note that 𝑦 is the sum of the observed reward
(𝑠, 𝑎) during the transition from 𝑠 to 𝑠′ and the expected reward thereon
ssuming that the agent chooses the action with the highest Q-value
nd is shown in (17). Note that the latter denotes the expected rewards
rom future and is discounted by a factor 𝛾 ≤ 1 to adjust the weightage
he agent gives to rewards at current time step and expected future
ewards.

= 𝑟(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃′) (17)

Note that (𝑦−𝑄(𝑠, 𝑎; 𝜃)) is called the TD (temporal difference) error. 𝑦
s the target value and it is computed with the help of a target network.
he target network is a copy of the Q-network but one which is updated
t a slower rate by using a soft update factor 𝜏. In (17), 𝜃′ represents
he parameters of the target network.

In each episode the agent starts from an initial state and takes
sequence of actions determined by the policy given by 𝜋(𝑠) =
ax𝑎𝑄(𝑠, 𝑎; 𝜃). This sequence of actions continue until the agent reaches

he goal or if a termination condition is met. The termination condition
s invoked when the ship has an along track distance greater than the
oal location and its velocity is pointed away from the goal point.
his is described in detail later (in Section 4.4). However, if the ship

s unable to reach the destination within a maximum number of time
teps, then too the episode is terminated.

After each episode state transitions observed by the agent are sam-
led and added to an experience replay buffer. The replay buffer
onsists of multiple transitions from both the most recent episode and
he previous episodes. As the number of transitions in the replay buffer
each the maximum number of transitions that can be stored, the
lder transitions are replaced by transitions from newer episodes. A
ini batch of transitions is randomly chosen from the replay buffer

or updating the network after each episode, which ensures that the
pdates are unbiased and the transitions are reused in the training
rocess. After each episode the training process updates the parameter
et 𝜃 to minimize the loss function defined in (16) for the mini batch
f transitions sampled from the replay buffer.

With sufficient training, the model will learn to minimize the loss
unction, which means that the neural network will learn to predict the
-values in such a way that the transitions observed in the training data
ill generally correspond to the choice of the action with the largest Q-
alues. However, care must be taken to not over-train the model as this
an lead to poor generalization when the agent experiences scenarios
hat it was not exposed to in the training data.

.3. Epsilon-Greedy algorithm

In a RL problem the agent must trade-off between exploration and
xploitation to arrive at the optimal policy. Exploration refers to the
gent exploring different actions to observe its effect on the cumulative
eward. This allows the agent to explore the environment and to look
or more optimal action sequences that it might not have learned so
ar. On the other hand, once a policy has been established leading to
he goal, the agent will try to reinforce this policy by choosing actions
ased on this policy. This behavior is known as exploitation that refers
o the tendency of the agent to maximize its rewards based on its
xperience.
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Both exploration and exploitation are equally important. Without
xploitation the agent will never learn to settle onto the optimal policy
nd would keep wandering. However, without exploration, the agent
ay be stuck on an sub-optimal policy.

The 𝜖-Greedy algorithm is one common approach used to balance
etween exploration and exploitation tendencies of the agent. A param-
ter 𝜖 is introduced, which is the probability with which the agent takes
random action from any particular state. So the agent takes the action

orresponding to the highest Q-value with probability 1 − 𝜖 (exploita-
tion) and chooses random actions with probability 𝜖 (exploration). This
policy in this case can be mathematically represented as:

𝜋(𝑠) =

{

argmax𝑎𝑄(𝑠, 𝑎)with a probability of 1 − 𝜖
random action with a probability of 𝜖

(18)

The DQN algorithm described above is expressed in a condensed
form in Algorithm 1. In this study, tensorflow framework is used to
model the RL agent (Abadi et al., 2015).

Algorithm 1 DQN algorithm
1: Initialise Q-network and target network with random parameters 𝜃0
2: Initialise an empty experience replay buffer 
3: for Episode = 1,2...N do
4: for t=1,2...T do
5: Choose random action 𝑎𝑡 as per (18)
6: Obtain reward 𝑟𝑡 and next state 𝑠𝑡+1
7: Add transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) to replay buffer 
8: End episode if termination conditions are met
9: if update frequency is a multiple of time step then

10: Sample 𝑀 random transitions from 
11: Compute loss as below using 𝑦𝑖 from (17)
12: 𝐿(𝜃) =

∑𝑀
𝑖=0

1
𝑀 [𝑦𝑖 −𝑄(𝑠𝑖, 𝑎𝑖; 𝜃)]2

13: Update the network using the computed loss
14: Update target network as: 𝜃′ = 𝜏𝜃 + (1 − 𝜏)𝜃′

15: end if
16: end for
17: end for

4. Implementation of DQN algorithm for ship navigation

This section discusses the details of DQN framework applied to ship
navigation. An observation state of the ship is provided as an input to
the Q-network at every time step based on which the DQN agent takes
actions to maneuver the ship towards the goal position. Fig. 7 shows
the schematic representation of the problem statement.
8

c

Fig. 7. Representation of the problem statement.

4.1. Observation states

The observation state represents the current state of the agent that
is provided as an input to the Q-network at every time step. It is based
on this information that the agent decides what action to execute. It is
important to note that observation states should be independent of the
waypoint to be applicable for any generically chosen waypoint or path
formed by waypoints. In this study four observation states consisting of
four variables: cross-track error (𝑑𝑐), course angle error (𝜒𝑒), distance to
destination (𝑑𝑤𝑝) and yaw rate(𝑟) are chosen.

4.1.1. Cross-track error
The initial and destination (or goal) waypoint coordinates are de-

noted by (𝑥𝑖, 𝑦𝑖), (𝑥𝑔 , 𝑦𝑔) respectively. The ship coordinates at an inter-
ediate time step are denoted by (𝑥, 𝑦). Cross-track error (𝑑𝑐) is defined

as the perpendicular distance of the current ship’s coordinates from the
line joining initial and destination waypoints.

Two vectors 𝑣̂1 and 𝑣2 are defined as shown in Fig. 7. 𝑣̂1 is a unit
ector in the direction of the line joining the initial and destination
aypoints and 𝑣2 is the vector pointing towards the destination from
urrent ship location. It can be seen from Fig. 7 that the cross-track



Ocean Engineering 273 (2023) 113937R. Deraj et al.

𝑟

t
F
f

t

error 𝑑𝑐 is given by the cross product of the two vectors, 𝑣̂1 and 𝑣2.

𝑣1 = (𝑥𝑔 − 𝑥𝑖)𝑖 + (𝑦𝑔 − 𝑦𝑖)𝑗

𝑣̂1 =
𝑣1
|𝑣1|

𝑣2 = (𝑥𝑔 − 𝑥)𝑖 + (𝑦𝑔 − 𝑦)𝑗

𝑑𝑐 = 𝑣2 × 𝑣̂1

(19)

Note that a deviation of the vessel to the left of the line joining the
waypoints will result in a negative cross track error and a deviation to
the right will result in a positive cross track error.

4.1.2. Course-angle error
The course angle error is defined as the angle between the direction

of ship’s instantaneous velocity and the direction of the desired heading
and is calculated as shown in (20). It is computed by taking the
smallest signed angle (ssa) of the difference in the direction of ship’s
instantaneous velocity and the direction of the desired heading towards
the goal waypoint (Fossen, 1999).

𝜒𝑒 = 𝑠𝑠𝑎
(

𝑎𝑟𝑐𝑡𝑎𝑛2(𝑈⃗ ) − 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑣2)
)

(20)

Here 𝑈⃗ is the ship’s instantaneous velocity represented in global
coordinates and can be calculated as shown in (21).

𝑈⃗ = 𝑥̇𝑖⃗ + 𝑦̇𝑗

𝑥̇ = 𝑢 cos(𝜓) − 𝑣 sin(𝜓)

𝑦̇ = 𝑢 sin(𝜓) + 𝑣 cos(𝜓)

(21)

4.1.3. Distance to destination
The distance to the destination waypoint 𝑑𝑤𝑝 is defined as shown in

(22).

𝑑𝑤𝑝 =
√

(𝑥𝑔 − 𝑥)2 + (𝑦𝑔 − 𝑦)2 (22)

4.2. Action states

The commanded rudder angle, 𝛿𝑐 is the action that the agent can
choose at every time step and has been divided into a set of three
discrete values 𝛿𝑐 ∈ [−35◦, 0◦, 35◦]. As the Q-values output corresponds
to the number of actions, the Q-network computes three Q-values. So,
at every time-step, the DQN agent executes one of the three actions.
Note that the agent only controls the commanded rudder angle and the
actual rudder angle (𝛿) still varies smoothly as governed by (14) and
(15).

4.3. Reward structure

The reward functions for a RL setup considerably influence its deci-
sion making. For this problem, rewards were chosen for the cross-track
error, the course angle and the distance to the destination waypoint.
The reward associated with cross-track error (𝑑𝑐) is given by

𝑟1 = 2 exp

(

−𝑑2𝑐
12.5

)

− 1 (23)

The function ensures that the reward value falls within the range of
-1 to 1 for each time step, and a graphical representation of the curve
can be observed in Fig. 8. The coefficient of the exponential term is
chosen such that for |𝑑𝑐 | > 3, the reward associated with cross track
error becomes negative. The reward associated with the course angle
error (𝜒𝑒) is given by

2 = 1.3 exp
(

−10 |
|

𝜒𝑒||
)

− 0.3 (24)

At every time step, the function has been selected in a way that
he reward value remains within the range of -0.3 to 1 as shown in
ig. 9. The coefficient of the exponential term is chosen such that

0

9

or |𝜒𝑒| > 8.5 , the reward associated with the course angle error
Fig. 8. Cross track reward.

becomes negative. Note that the cross-track error has 𝑑2𝑐 as an argument
o the exponential function while the course angle error has |𝜒𝑒| as

the argument. This ensures that the reward decreases at a faster rate
for cross-track error than the course angle error. This choice of the
two reward functions enables the agent at each time step to prioritize
reducing cross-track error over reducing the course angle error.

It should be noted that the overall reward during the training
process should be negative to ensure that the agent tries to reach the
goal quickly and does not loiter around the environment to accumulate
more rewards. To ensure this, a third reward associated with distance
to the destination waypoint (𝑑𝑤𝑝) is introduced and is given by

𝑟3 =
−𝑑𝑤𝑝
4

(25)

The coefficient 1∕4 is found to be sufficient to result in an overall
negative reward for the episode. Based on this reward structure it
can be seen that when the goal waypoint is farther than 4𝐿 from the
current position, the agent will aim to reduce the distance to goal first
rather than focusing on keeping course. This value of 4 is arrived at by
observing that the total episode reward is negative. It is found that the
factor of 4 along with the reward structure taken for 𝑟1 and 𝑟2 provide a
path that smoothly decreases course angle error and cross track error as
the distance reduces. Other values are also possible but they will lead
to a different rate of decrease of cross track error and course angle error
with distance. For example a −𝑑𝑤𝑝∕8 reward with 𝑟1 and 𝑟2 being the
same will cause the cross track error to be weighted more than distance
to goal when the vessel is 8𝐿 away from the goal waypoint. However
for −𝑑𝑤𝑝∕4 this reduces the transition point to 4𝐿 away from the goal
waypoint.

The reward at time step 𝑚 is denoted by 𝑟𝑚 and is given as the sum
of the rewards from each component at that time step. The total reward
for the episode (also known as episode return) is obtained by summing
the reward accumulated by the agent from all time steps and is shown
in (26).

𝑟𝑚 = 𝑟1 + 𝑟2 + 𝑟3

𝑅 =
𝑛
∑

𝑚=0
𝑟𝑚

(26)

In (26), 𝑟𝑚 is the reward at time step 𝑚 and 𝑅 is the episode return,
which is the cumulative sum of rewards obtained at each time step(see
Figs. 8 and 9).

4.4. Training process

In each episode, the ship starts from the origin (initial waypoint),
oriented along the positive 𝑋-axis (𝜓 = 0) of the GCS and with an initial
velocity of design speed in the surge direction. The ship has no initial

acceleration in any of the 3-DOF and no initial velocity in the sway and
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𝑣

Fig. 9. Course angle reward.

Fig. 10. Scatter plot of thousand random points with radius between 8𝐿–28𝐿.

yaw motions. 𝜖 - greedy algorithm is used while training to allow for
ample exploration. 𝜖 linearly decays from 1 to 0 throughout a majority
of the training episodes and it is kept at 0 towards the end of training
to allow for exploitation behavior.

In each training episode, the destination is chosen randomly,
whereas the initial waypoint, velocity and heading are fixed at (0, 0),
1 and 0◦ respectively. The radial distance of the destination waypoint
from the initial waypoint is sampled from a uniform distribution be-
tween 8𝐿 to 28𝐿. The direction of the destination waypoint is sampled
from a uniform distribution between 0 and 2𝜋. Fig. 10 shows a plot of
1000 randomly sampled goal coordinates.

4.4.1. Episode termination
In every episode of training, the aim of the agent is to accumu-

late maximum possible return which subsequently navigates the ship
towards the goal. A tolerance of 0.5L centered around the destination
waypoint is specified. As long as the ship is able to enter this region, the
positive termination condition is satisfied and the episode is considered
to be successful. A terminal reward of +100 is given when this positive
termination condition is achieved. However, when an untrained agent
tries this it may not be successful. So, certain conditions need to
be formulated to determine if the particular agent is still capable of
reaching the destination point or if the episode is a failure and has to be
terminated to avoid wasting time. The negative termination condition
is given as follows:

1⃗ ⋅ 𝑣2 < 0 and 𝑈⃗ ⋅ 𝑣2 < 0

The first condition is only based on the ship’s current position and
does not depend on the ship’s current velocity. In Fig. 11 it can be
10
Fig. 11. Visualizing the terminating condition.

Table 7
Hyperparameters.

Hyperparameter Value

Initial learning rate 0.001
Decay steps 5000
Decay rate 0.5
Hidden layers (64,64)
Discount factor(𝛾) 0.95
Sample batch size 128
Replay buffer size 100000
Activation function tanh
Maximum time steps 160
Time step interval 𝛥t 0.3
Number of episodes 7000
Update frequency(time steps) 20
Target network update frequency(time steps) 1
Target update rate (𝜏) 0.01

seen that the angle between 𝑣1 and 𝑣2 becomes obtuse, which also
indicates that the dot product becomes negative, as soon as the ship
crosses the line perpendicular to the line joining the initial and the
destination waypoints. The second condition takes into consideration
the direction of ship’s velocity vector. Even if the ship has crossed the
destination point, the episode is not terminated if the ship’s velocity
has a component that is still directed towards the destination point.

4.5. Hyperparameters of the network

The agent is calibrated for satisfactory waypoint tracking by tuning
the hyperparameters of the DQN. The agent is then tested by simulating
various maneuvers for waypoint tracking. The learning rate is chosen
as exponential decaying function. The hyperparameters for the model
are given below in Table 7. The training losses and episode returns
averaged over 100 episodes are shown in Fig. 12. The policy at 8000
episodes is chosen to strike a balance between under-fitting and over-
fitting and will be tested in the next sections for path following. It is
also important to note that this study has used TensorFlow version
2.9.1 which allows the GPU operations to be made deterministic.
This means that the results produced in the study can be reproduced
on any computer by training the agent with the same random seed
value (TensorFlow, 2022). The code associated with this training has
been made available through a Github repository.

5. Calm water results

5.1. Waypoint tracking

The performance of the RL agent is tested by analyzing waypoint
tracking and path following in different situations. A starting state
is chosen where the vessel is oriented along the global 𝑥-axis and
initialized with unit non-dimensional velocity in the surge direction.
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Fig. 12. Training returns and loss for the model.

he ability of the agent to track points in all four quadrants is inves-
igated by specifying waypoints (10𝐿, 10𝐿), (10𝐿,−10𝐿), (−10𝐿,−10𝐿)

and (−10𝐿, 10𝐿) with the same initial starting state as mentioned above
n each case. Fig. 13 shows that the trained agent is successful in
eaching the destination points in all four quadrants. It is also observed
hat the path is sufficiently smooth and that the agent tries to reduce
he cross-track error and course angle error simultaneously.

.2. Path following through waypoint tracking

Since the RL agent is successful in being able to guide the ship to
he destination waypoint, it can be directed to follow complex paths
hat are discretized into adequate number of waypoints assuming that
he chosen set of waypoints describe the path effectively.

To test the turning ability of the agent, circles of radius 6𝐿 and 12𝐿
are defined by discretizing them into 8 and 12 waypoints respectively
as shown in Fig. 14. In each case the vessel starts at the intersection
of the circle with the positive 𝑥-axis and is initially oriented towards
the negative 𝑦-axis. Consecutive waypoints are provided such that the
agent tries to track the circle in the anti-clockwise direction. It can be
seen that the agent is able to follow the outer circle with radius 12𝐿
well. However, the deviation is larger for the shorter circle of radius 6𝐿.
Although the agent is trained for tracking waypoints at least 8𝐿 away
from initial waypoints, it is able track the 12𝐿 radius circle well, where
the distance between waypoints is slightly greater then 5𝐿. However,
the performance is worse while tracking a 6𝐿 radius circle, where the
distance between waypoints is about 4𝐿. The root mean square cross
track error for a trajectory is defined as

𝑑𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1
𝑑2𝑐 (𝑛𝛥𝑡) (27)

where 𝑁 is the number of time steps in the trajectory and 𝑑𝑐 (𝑛𝛥𝑡)
denotes the value of the cross track error at the 𝑛th time step. It
seen from Fig. 14 that the 𝑑𝑅𝑀𝑆𝐸 for the larger circle is less than the
corresponding value for smaller circle.
11
Fig. 13. Single waypoint tracking.

Fig. 15 shows the ability of the agent to track an elliptical path. An
ellipse of major and minor axes of lengths 28𝐿 and 24𝐿 respectively
is discretized into 15 waypoints. The ship starts at (𝑥, 𝑦) = (14𝐿, 0)
and is initially oriented along the negative 𝑌 -axis (𝜓 = −𝜋∕2). The
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Fig. 14. Circle maneuver waypoint tracking.

distance between the waypoints is about 5𝐿 and the local radius of
curvature along the path varies from about 10𝐿 to 16𝐿. It can be seen
that the agent is able to track the elliptical path successfully with a
𝑑𝑅𝑀𝑆𝐸 = 0.2969𝐿.

Finally, a path in the shape of ‘‘eight’’ is defined and is discretized
into 23 waypoints. This path was chosen to observe the effect of
asymmetry in the port and starboard turns due to the propeller rotation.
It can be seen from Fig. 16 that the ship starts at origin with a heading
of 𝜓=0 and completes the lower circle of radius 9𝐿 first before finishing
the upper circle of the same radius to complete the eight maneuver
successfully. The propeller rotation asymmetry does not seem to impact
the tracking performance as the turns towards both sides are tracked
equally well.

6. Experiments

In order to validate the simulation results against experiments, a
scaled free running model of the KCS model is equipped with the policy
learnt by the RL agent. Fig. 17 shows the scaled ship model deployed
in the lake. The vehicle is equipped with a brushless DC motor that
12
Fig. 15. Ellipse maneuver waypoint tracking (𝑑𝑅𝑀𝑆𝐸 = 0.2969𝐿).

Fig. 16. Eight (‘8’) maneuver waypoint tracking (𝑑𝑅𝑆𝑀𝐸 = 0.4557𝐿).

Fig. 17. 1:75.5 scaled model of KCS.

Table 8
Sensors onboard.
Sensor ROS standard Frequency

Message (Hz)

SBG Ellipse-A (IMU) sensor_msgs/Imu 100
simpleRTK2B SBC sensor_msgs/NavSatFix 10

controls the propeller and a stepper motor that controls the rudder.
The propeller RPM is kept fixed while the commanded rudder angle
is controlled by the output of the RL agent policy. Fig. 18 displays the
SBG Ellipse-A IMU and Ardusimple simpleRTK2B-SBC GPS system, both
of which are equipped in the vehicle. Furthermore, Table 8 lists the
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Fig. 18. Sensors used: simpleRTK2B SBC(left) and SBG Ellipse-A (right).

Fig. 19. Waypoints and the Trajectory: white represents the square generated by the
waypoints, red represents the trajectory traversed by the vessel.

Fig. 20. Comparison of the path traversed by the model in experiment and simulation
(Simulation 𝑑𝑅𝑀𝑆𝐸 = 0.6286𝐿 Experimental 𝑑𝑅𝑀𝑆𝐸 = 0.8257𝐿).

sampling rate and the message type published by the sensor. The sensor
measurements are fused using a Kalman filter. The vehicle is tested
at IIT Madras Lake with a span of 300 m and a width of 100 m (see
Table 8). Due to the limitation of the space in the lake, the same ma-
neuvers as described in the previous section could not be undertaken.
13
Fig. 21. Comparison of crosstrack error between experiment and simulation.

Fig. 22. Comparison of course-angle error between experiment and simulation.

Therefore, the simulations and experiments were performed for a set
of waypoints that trace a 40 m square in the center of the lake. The
GPS coordinates of the waypoints are listed in Table 9. The first and
last waypoints are the same and are also chosen as the datum.

The experimental trajectory followed by the vehicle is shown in
Fig. 19, where the white lines denote the straight lines between the
waypoints defined in Table 9 and the red line represents the actual
trajectory followed by the vessel. A comparison of results from the
experiments with those from simulations are shown in Fig. 20. The
variation of the cross-track error, defined in (19), is shown in Fig. 21.
The corresponding variation of the course angle error, defined in (20),
is shown in Fig. 22. The model tries to track the setpoint 𝑑𝑐 = 0 for
every edge of the square until the waypoint at the vertex is tracked.
The circle of acceptance was chosen to be 3𝐿 for both simulation and
experiments while tracking the waypoints. It can be seen that the course
angle error from the simulations agree well with the corresponding
values from experiments. It can be seen from Fig. 21 and Fig. 22 that
the time of switching of waypoints also agrees between the simulations
and experiments. The cross-track error curves between the simulation
and experiment are slightly different. The simulations demonstrate a
higher first overshoot of cross-track error after the switching of the
waypoint, while the experiments do not exhibit such a significant
overshoot. The difference can be attributed to the minor differences
in dynamics of the simulation and the actual vessel and the presence
of mild gust wind in the lake during the experiments. Overall the
simulated trajectories and the experimental trajectories agree well and
validates the model of the craft and the DQN based controller.

7. Performance with wind forces

In real ocean the vessel will not be operating in calm waters and
would be subjected to environmental disturbances that arise due to
wind, waves and currents. While all three disturbances are important
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Table 9
Waypoints.
Waypoints Latitude (deg) Longitude (deg)

WP1 12.994224 80.239620
WP2 12.993859 80.239544
WP3 12.993474 80.239544
WP4 12.993474 80.239151
WP5 12.993859 80.239151
WP6 12.993859 80.239544
WP7 12.994224 80.239620

for a real ship, in this study the effect of wind disturbance on the vessel
will be studied to understand the disturbance rejection capability of the
controller.

7.1. Modeling wind forces

So far, the path following ability for an autonomous ship in the
absence of any external environmental forces has been investigated
using the DQN agent. This section discusses the ability of the agent
to follow a desired path in the presence of moderate and severe wind
conditions. Since the observation states do not include the wind param-
eters, the agent cannot take anticipatory actions (feedforward control)
to compensate for wind forces and rather only reacts when it deviates
significantly from the desired path (feedback control).

Wind forces and moments are modeled and added to the right hand
side of (5). The non-dimensional velocity of the wind is denoted by
𝑉𝑤 and the direction of wind is given by 𝛽𝑤. The direction of wind is
efined as the angle the wind direction makes with respect to positive
-axis of GCS. The components of non-dimensional wind velocity with

espect to the BCS of the ship are then defined as shown in (28).

𝑤 = 𝑉𝑤 cos (𝛽𝑤 − 𝜓)

𝑣𝑤 = 𝑉𝑤 sin (𝛽𝑤 − 𝜓)
(28)

The non-dimensional velocity components of the ship relative to the
wind can be defined as 𝑢𝑟𝑤 = 𝑢 − 𝑢𝑤 and 𝑣𝑟𝑤 = 𝑣 − 𝑣𝑤. The magnitude
f non-dimensional relative wind velocity 𝑈𝑤𝑟 and relative wind angle
ith respect to the vessel 𝛾𝑤 are given by (29).

𝑈𝑤𝑟 =
√

𝑢2𝑟𝑤 + 𝑣2𝑟𝑤

𝑤 = arctan 2
(

−𝑣𝑟𝑤,−𝑢𝑟𝑤
)

(29)

The non-dimensional wind force components 𝑊𝑥, 𝑊𝑦 and the non-
imensional wind yaw moment 𝑊𝜓 can then be calculated as shown in
30)

𝑊𝑥 = 𝐶𝑤𝑥(𝛾𝑤)
𝜌𝑎
𝜌
𝐴𝑥𝑈

2
𝑤𝑟

𝑊𝑦 = 𝐶𝑤𝑦(𝛾𝑤)
𝜌𝑎
𝜌
𝐴𝑦𝑈

2
𝑤𝑟

𝑊𝜓 = 𝐶𝑤𝜓 (𝛾𝑤)
𝜌𝑎
𝜌
𝐴𝑦𝐿𝑂𝐴𝑈

2
𝑤𝑟

(30)

where 𝐴𝑥 and 𝐴𝑦 represent the non-dimensional lateral and longitu-
inal projected areas of the hull above water in the yz and xz planes
n the BCS respectively. Note that the non-dimensional factor for the
rojected areas 𝐴𝑥 and 𝐴𝑦 is taken as 𝐿𝑑𝑒𝑚. The non-dimensional wind
oefficients 𝐶𝑤𝑥, 𝐶𝑤𝑦 and 𝐶𝑤𝜓 are assumed to be functions of the
elative wind direction 𝛾𝑤. 𝜌𝑎 is the density of air and 𝜌 is the density of
ater. 𝐿𝑂𝐴 represents the non-dimensional overall length of the vessel,
on-dimensionalized with respect to the length between perpendiculars
. The values of wind parameters considered in this study are shown

n Table 10.
The wind speed and the direction are varied to simulate different

cenarios. The performance of the controller in the presence of constant
14

ind is evaluated.
Table 10
Wind force parameters.
Parameter Value

𝐴𝑥 0.1064
𝐴𝑦 0.7601
𝐶𝑤𝑥 𝑐𝑜𝑠(𝛾𝑤)
𝐶𝑤𝑦 𝑠𝑖𝑛(𝛾𝑤)
𝐶𝑤𝜓 0.5𝑠𝑖𝑛(𝛾𝑤)
𝜌𝑎 1.225 kg∕m3

𝜌 1025 kg∕m3

Table 11
Wind force cases.
Case Path 𝑣𝑤 𝛽𝑤 𝑑𝑅𝑀𝑆𝐸

1 Line 6 𝜋∕2 0.1227𝐿
2 Line 6 −𝜋∕2 0.1615𝐿
3 Line 9 𝜋∕2 0.9110𝐿
4 Line 9 −𝜋∕2 0.9938𝐿
5 Ellipse maneuver 6 0 0.8456𝐿
6 Eight maneuver 6 𝜋∕4 0.3941𝐿

7.2. Results

Although several wind speeds and directions are investigated, six
specific cases are shown in Table 11. The first four cases correspond to
straight line paths and the fifth and sixth cases correspond to the ellipse
and the eight maneuvers respectively. The non-dimensional wind speed
and direction of wind and the observed 𝑑𝑅𝑀𝑆𝐸 values for each case
are reported in Table 11. Fig. 23 shows the path tracked for each
of the cases listed in Table 11. It can be seen that for straight line
paths, the vessel initially deviates by a small amount in moderate winds
(𝑉𝑤 = 6𝑈) but later recovers to track the path successfully. Stronger
winds lead to largest initial deviations and causes the 𝑑𝑅𝑀𝑆𝐸 to be
multiple times larger than that observed in moderate winds. Cases 5
and 6 depict ellipse and eight maneuvers in the presence of a steady
wind. Fig. 23 shows that the ellipse and eight maneuvers are also
followed successfully in the presence of strong winds. In the ellipse
maneuver too the beam wind results in a significant initial deviation.
However, the model eventually is able to reach all the waypoints and
complete the desired path. These simulations demonstrate the ability
of the controller to reject the disturbances effectively.

8. Discussion

This section discuss some of the salient features of the data driven
RL controllers demonstrated in the previous sections.

Although the yaw rate 𝑟 is present in the observation state vector,
it does not have a reward associated with it. However, it has been
found that excluding the yaw rate from the observation state affects
the ship’s trajectory significantly. Two agents are trained independently
to highlight the effect of the yaw rate on the ability of the agent
to track waypoints. One agent is trained with yaw rate included in
the observation states, while the other agent is trained with yaw rate
excluded from the observation states. All other hyperparameters are
kept the same between the models and are the same as reported in
Table 7. Fig. 24 shows the trajectories tracked by both agents for the
same waypoints. It can be seen that the agent that has the yaw rate
in the observation state performs better than the other agent. This
indicates that the agent, without any knowledge of the dynamics of
the vessel or any reward associated with yaw rate, is able to correlate
yaw rate with rudder angle and uses this information in addition to
the other observation states while selecting a rudder action. While
this might seem trivial from the knowledge of the dynamics of the
vessel, the ability of the agent to make this connection without any
knowledge of the dynamics and without any reward associated with

yaw rate demonstrates the capability of the data driven methods to
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a

Fig. 23. Different cases for path following in presence of constant and uniform wind.
infer information from the environment beyond that explicitly expected
by their reward structure.

In order to determine the ability of the RL agent to control the vessel
in the presence of wind, several combinations of wind speed and wind
direction are simulated for the straight line maneuver. In each case the
vessel starts at (0, 0) with a initial heading of 𝜓 = 0 and tries to track

straight line along the 𝑥-axis. The ratio of the 𝑑𝑅𝑀𝑆𝐸 values in wind
to the corresponding 𝑑𝑅𝑀𝑆𝐸 value in calm water is plotted in Fig. 25
for two different wind speeds and nine different wind directions. It can
be seen from Fig. 25 that for low wind speed 𝑉𝑤 = 6𝑈 , the RL agent is
15

able to track the waypoints well for all wind directions and the error t
is no more than 20% as to compared to calm water conditions. When
wind speed increases to 𝑉𝑤 = 9𝑈 , wind direction of ±90◦ experiences
a greater deviation than observed in calm water. It can be observed
from Fig. 23 that the maximum deviation occurs at the beginning of
the episode where the wind is incident along the beam direction and
results in a significant deviation before the vessel is able to returns to
the path and follow it effectively.

It can also be seen from Fig. 23 that for straight line paths in the
presence of a high wind speed 𝑉𝑤 = 9𝑈 , a 10% deviation is observed in
𝑑𝑅𝑀𝑆𝐸 for a wind heading direction of −90◦ as compared to +90◦ when

rying to follow a straight line. This can be attributed to the asymmetry
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𝑒

Fig. 24. Comparison of waypoint tracking with and without yaw rate(𝑟) in the
observation state.

in the rudder dynamics when port and starboard rudder angles are
applied. Due to the vessel having a single screw propeller and rotating
in one direction, the flow past the rudder is not symmetric. This effect
is captured in the rudder dynamics (see Section 2.3). While this effect
is not significant for moderate wind speeds of 𝑉𝑤 = 6, it is significant
for the higher wind speed 𝑉𝑤 = 9 where the wind forces and moments
are much stronger.

8.1. Comparison with a PD based controller

In this section the DQN agent is compared with a PD controller to
compare their path following ability. This study uses a Proportional
Derivative (PD) controller to ensure convergence of the vessel’s heading
𝜓 to the desired heading angle 𝜓𝑑 , where the desired heading angle
(𝜓𝑑) is obtained from integral line of sight (ILOS) guidance law (Fossen,
2021). The error 𝑒 is defined as the difference between the reference
value 𝜓𝑑 and the current heading angle 𝜓 and is shown in (31). The
derivative of the error with respect to time is given by (32)

𝑒 = 𝜓𝑑 − 𝜓 (31)

̇ = 𝜓̇𝑑 − 𝜓̇ = −𝑟 (32)

where 𝜓̇𝑑 is taken to be 0 for the control implementation. This is a
fair approximation as the rate of change of desired heading angle 𝜓̇
16

𝑑

Fig. 25. Relative cross track error for straight line maneuver with wind speeds 𝑉𝑤 =
6, 9.

is governed by the outer guidance loop and varies slowly. Thus the
proportional derivative (PD) control law can be expressed as

𝛿𝑐 = 𝐾𝑝𝑒 +𝐾𝑑 𝑒̇ = 𝐾𝑝(𝜓𝑑 − 𝜓) −𝐾𝑑𝑟 (33)

where 𝛿𝑐 is the commanded rudder angle. 𝐾𝑝 is the proportional gain
and 𝐾 is the derivative gain of the controller. These controller gains
𝑑



Ocean Engineering 273 (2023) 113937R. Deraj et al.
Fig. 26. Comparison of the path traversed by the model in PD controller and RL controller in simulation.
are tuned in such a way that deviation of vessel’s trajectory from the de-
sired square trajectory as shown in Fig. 26(a) is minimal. 𝐾𝑑 = 4.0 and
𝐾𝑝 = 1.7 were found to provide the best performance among the values
investigated in the tuning process. It can be seen from Figs. 26(a) and
26(b) that the RL controller performance is similar to the PD controller
with the root mean square cross track error being marginally (4%)
smaller for the DRL controller. Further experiments were performed
on an ellipse and eight trajectory and it was found that the root mean
square cross track error for PD controller is 5 times the corresponding
value from DRL controller in case of eight trajectory (Fig. 26(c)). This
same value is about 4 times for the ellipse trajectory (Fig. 26(d)). Thus
it can be seen that the traditional controller performance parallels the
RL controller on paths for which the traditional controller gains are
tuned. However, the same traditional controller is unable to perform
as well as the RL controller on different paths for which its gains were
not tuned.

9. Conclusion and future studies

This study has implemented a DRL based controller for path fol-
lowing of a ship using waypoints. A DQN agent was trained for this
task and was provided rewards associated with cross-track error, course
angle error and distance to goal waypoint. It was observed that even
thought the agent did not receive any reward for yaw rate, it was
a key observation state that was needed for the agent to effectively
track the goal waypoint. The DQN agent demonstrated that it could
successfully track destination waypoints in calm waters. It was also
demonstrated that the agent could track complex paths like ellipses and
‘‘eight’’ maneuvers when discretized by waypoints.

In the presence of very strong winds up to six times the ship speed
(about 250 km/hr for a full scale ship under consideration), the agent
did not exceed more than 20% of the cross track errors observed in
calm waters. In speeds of up to nine times the ship speed the cross-
track errors did show a significant increase in beam wind conditions. It
is also found that the DRL based controller can provide a performance
as good as the traditional controllers in terms of path following.
17
In the future the existing DRL framework shall be improved to
include both obstacle and collision avoidance and following of COL-
REGs. This will allow multiple objectives to be optimized at once
and be codified into a policy that is computationally inexpensive to
implement in real time. These constructs of multi-objective control will
also be tested experimentally to better understand the nuances of the
traditional and modern controllers. Further environmental disturbances
such as waves and currents will also be explored in the future studies.
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