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Abstract—Recent advances in GAN-based architectures have 
led to innovative methods for image transformation. The lack of 
diversity of environmental factors, such as lighting conditions and 
seasons in public data, prevents researchers from effectively 
studying the differences in the behaviour of road users under 
varying conditions. This study introduces a deep learning pipeline 
that combines CycleGAN-turbo and Real-ESRGAN to improve 
video transformations of traffic scenes. Evaluated using dashcam 
videos from Los Angeles, London, and Hong Kong, our pipeline 
demonstrates a notable improvement in T-SIMM for temporal 
consistency during night-to-day transformations, achieving a 
7.97% increase for Hong Kong, 7.35% for Los Angeles, and 3.41% 
for London compared to CycleGAN-turbo. PSNR and VPQ scores 
are comparable, but the pipeline performs better in DINO 
structure similarity and KL divergence, with up to 153.49% better 
structural fidelity in Hong Kong compared to Pix2Pix and 
107.32% better compared to ToDayGAN. This approach 
demonstrates better realism and temporal coherence in day-to-
night, night-to-day, and clear-to-rainy transitions. 

Keywords—Traffic Scenes, Generative Adversarial Networks, 
Diffusion Models, Environmental Conditions 

I. INTRODUCTION  
Human behaviour in traffic has been studied extensively. 

Garay et al. [1] used a simulator task to compare the scanning 
behaviour of drivers in the night and daytime driving situations. 
They determined that all 48 participants were less likely to scan 
for risks at night, with 24 novice drivers (aged 16–17 years) and 
24 experienced drivers (aged 40–50 years) participating in the 
study. This study revealed a significant overall effect of lighting 
conditions on risk prediction accuracy (F (1, 46) = 18.74, p < 
0.001). The novice drivers correctly identified the risks 46% of 
the time during daytime conditions, compared to 37% at night. 
In contrast, experienced drivers demonstrated higher accuracy, 
predicting risk 67% of the time during the day and 55% at night. 
This indicates that although experienced drivers outperformed 
novices in both lighting conditions, both groups were adversely 
affected by reduced visibility at night. Tränkle et al. [2] found 
that young male drivers (aged 18–21) rated traffic situations as 
less risky than older males (aged 35–75 years), particularly in 
situations involving darkness, curved roadways and rural 
environments. Siddique et al. [3] studied the severity of 
pedestrian injuries, including differences in crossing locations 

and light conditions. They showed that the chances of 
pedestrians sustaining a fatal injury are 49% lower at 
intersections than at midblock locations under daylight 
conditions, 24% lower under dark-with-street-light conditions, 
and 5% lower under dark-without-street-light conditions. 
Compared to dark conditions without street lighting, daylight 
reduces the odds of a fatal injury by 75% at mid-block locations 
and 83% at intersections, while street lighting reduces the odds 
by 42% at midblock locations and 54% at intersections. Evans 
et al. [4] compared risk and difficulty from the driver's point of 
view during day and night by showing 14 different videos in 
which 12 videos were in pairs from the same location, but the 
traffic conditions were different. In addition, the authors were 
unable to collect the videos in time for the remaining two videos. 
Campbell et al. [5] showed in their review that fatal pedestrian 
crashes are more likely to occur during nighttime hours, and 
nonfatal pedestrian crashes are more likely to occur during 
daytime hours. The probability of a pedestrian being killed 
increases at least three times when the person is involved in a 
night-time crash compared to a daytime crash [6], [7]. A large 
body of research determines the reasons for the high risk of 
death in traffic at night [8], [9], [10], [11]. 

The limitations of existing public traffic datasets present a 
challenge in this area. However, datasets, such as CamVid [12], 
Cityscapes [13], KITTI [14], LYFT L5 [15], and H3D [16], have 
traffic scenes only from daylight and a clear sky. Some datasets, 
such as AppoloScape [17] and KAIST [18], do have scenes of 
rainy conditions but do not have scenes of driving at night. 

Since the advent of deep learning frameworks such as 
Generative Adversarial Networks (GANs) and Diffusion 
models, both architectures have shown the potential to translate 
one image from one environment to another. Zhao et al. [19] 
used Deep Convolutional Generative Adversarial Networks 
(DCGAN) [20] to generate images and videos of a new traffic 
scene. The training videos and images were taken from the 
KITTI dataset [14], and traffic scenes were collected in 
overtaking situations while driving from Xi'an to Changshu, 
China. Similarly, Tan et al. [21] attempted to create realistic 
scenes using GANs. GANs were used in multiple projects to 
translate images from day to night and vice versa [22], [23], [24], 
[25], [26], [27] and diffusion models [28], [29]. Similarly, 
different weather conditions were simulated with GANs, such as 



rainy, snowy, and overcast [30]. Cheng et al. [31] used GANs to 
address the problem of low resolution and blurred details in 
highway images caused by factors such as rain and fog, 
illumination interference, and nighttime lighting. These 
translations were used to improve all-day vehicle detection [32], 
traffic perception [33], object detection [34], anomaly detection 
[35], and the functionality of the Advanced Driver Assistance 
Systems [36]. 

A. Aim of the study 
This study aims to develop a deep learning-based pipeline 

that enhances the realism of traffic scene videos by transforming 
environmental conditions, specifically focusing on lighting and 
weather condition variations such as day-to-night, night-to-day 
and clear-to-rainy transitions. By combining CycleGAN-turbo 
[37] for domain translation with Real-ESRGAN [38] for 
resolution enhancement. Although significant progress has been 
made in image domain translation, relatively few studies have 
emphasised the realism of the generated videos. To assess its 
effectiveness, the generated scenes will be compared with both 
the output of CycleGAN-turbo and other state-of-the-art neural 
network architectures designed for similar tasks, such as 
translating day-to-night images. The comparison will be based 
on several performance metrics, including Temporal 
Consistency, Structural Fidelity, Visual Quality (PSNR, SSIM), 
and KL Divergence. 

II. METHOD 
The dashcam videos in day and night lighting conditions 

were collected from YouTube from three cities, namely London 
(UK), Hong Kong and Los Angeles (USA). These cities were 
chosen to represent diverse geographic locations on three 

continents (Europe, Asia, and North America), offering a wide 
range of traffic conditions and environmental contexts to test the 
effectiveness of the proposed enhancement pipeline. In addition, 
London and Hong Kong both have left-sided traffic, while Los 
Angeles has right-sided traffic. This choice of cities introduces 
a variation in driving behaviour, although differences in traffic 
flow, such as the direction of travel, were not explicitly 
controlled in this study. 

 
Fig. 1. Representation of the neural network architecture. 

In each of these videos, a 20-second segment was extracted 
and passed through the pipeline, which encompassed 
CycleGAN-turbo and Real ESRGAN as illustrated in Fig. 1. The 

TABLE I.  COMPARISON OF IMAGES OF TRAFFIC SCENES FROM DIFFERENT CITIES 

Transition Location Source Metric CycleGAN-turbo Ours 

Day-to-night 

London 
 

https://youtu.be/QI4_dGvZ5yE?t=300 
T-SIMM 0.9204 (0.0024) 0.9275 (0.0006) 

PSNR 27.7023 (0.0018) 27.6784 (0.0016) 
VPQ 14.0362 14.0138 

Hong Kong 
 

https://youtu.be/ULcuZ3Q02SI?t=380 
T-SIMM 0.9777 (0.0005) 0.9724 (0.0004) 

PSNR 27.6930 (0.0003) 27.6818 (0.0002) 
VPQ 14.0502 14.0372 

Los Angeles 
 

https://youtu.be/4uhMg5na888?t=970 
T-SIMM 0.9729 (0.0001) 0.9597 (0.0001) 

PSNR 27.7803 (0.0060) 27.7274 (0.0049) 
VPQ 14.0551 14.0106 

Night-to-day 

London 
 

https://youtu.be/mEXVBiT1eAM?t=1340 
T-SIMM 0.8677 (0.0251) 0.8973 (0.0080) 

PSNR 29.4572 (3.8110) 29.3145 (3.1562) 
VPQ 15.1004 15.0912 

Hong Kong 
 

https://youtu.be/XaR6qEt-BIY?t=1540 
T-SIMM 0.7909 (0.0027) 0.8540 (0.0011) 

PSNR 29.9508 (8.9165) 29.7831 (7.5484) 
VPQ 15.3165 15.2251 

Los Angeles 
 

https://youtu.be/eR5vsN1Lq4E?t=2340 
T-SIMM 0.7925 (0.0012) 0.8508 (0.0003) 

PSNR 27.8157 (0.0124) 27.8067 (0.0091) 
VPQ 14.1619 14.1552 

Clear-to-rainy 

London 
 

https://youtu.be/QI4_dGvZ5yE?t=300 
T-SIMM 0.8235 (0.0075) 0.8205 (0.0014) 

PSNR 27.6295 (0.0014) 27.6618 (0.0011) 
VPQ 14.1931 14.2089 

Hong Kong 
 

https://youtu.be/ULcuZ3Q02SI?t=380 
T-SIMM 0.9636 (0.0020) 0.9459 (0.0022) 

PSNR 27.6244 (0.0001) 27.6579 (0.0001) 
VPQ 14.2044 14.2161 

Los Angeles 
 

https://youtu.be/4uhMg5na888?t=970 
T-SIMM 0.9380 (0.0002) 0.9093 (0.0002) 

PSNR 27.5918 (0.0053) 27.6259 (0.0063) 
VPQ 14.1614 14.1763 

 

https://youtu.be/ULcuZ3Q02SI?t=380
https://youtu.be/4uhMg5na888?t=970
https://youtu.be/mEXVBiT1eAM?t=1340
https://youtu.be/XaR6qEt-BIY?t=1540
https://youtu.be/eR5vsN1Lq4E?t=2340
https://youtu.be/QI4_dGvZ5yE?t=300
https://youtu.be/ULcuZ3Q02SI?t=380
https://youtu.be/4uhMg5na888?t=970


20-second segments contained traffic for a better evaluation of 
the proposed enhancement pipeline. This selection ensured that 
the processing stages were applied to scenarios that are 
representative of real-world traffic conditions, including various 
vehicle movements and lighting variations. The day videos were 
used to translate from day to night and from clear to rainy 
scenarios, while the night videos from these locations were 
converted into daytime videos. Fig. 2 shows some of the 
translated images from the pipeline. The complete translated and 
original videos are available in the supplementary material. 

The generated videos from the pipeline were compared with 
the CycleGAN-turbo across different metrics used to assess the 
quality of video processing, compression, or generation tasks, 
namely the Temporal Structural Similarity Index Metric (T-
SIMM), Peak Signal-to-Noise Ratio (PSNR), Fréchet Video 
Distance (FVD) and Video Perceptual Quality (VPQ). 

      The extracted frames from the videos were used to 
compare with other neural network architecture models such as 
CycleGAN-turbo [37], CycleGAN [39], HEDNGAN [27], 
Pix2Pix [40] and ToDayGAN [41]. The weights are provided by 

the authors in the repository linked with their publication. We 
used CycleGAN [39] weights from HEDNGAN [27] as they 
were trained to translate images from day to night. 

III. RESULTS 
Fig. 2 shows the images of the traffic scenes generated by 

the CycleGAN-turbo [37] and the proposed pipeline. The 
generated videos are available in the supplementary material. 
The images generated by our architecture are clearer, and the 
lights are less scattered. The scenes from our pipeline present 
improved clarity and realistic light distribution, highlighting the 
enhanced quality achieved by our method for the day-to-night 
transition. 

The calculated values for T-SIMM, PSNR, and VPQ are 
listed in Table I. For the “day-to-night” transition in London, our 
pipeline achieved a T-SIMM score of 0.9275 (0.0006), 
compared to 0.9204 (0.0024) for CycleGAN-turbo. In Hong 
Kong’s “night-to-day” transition, the T-SIMM score for our 
method was 0.8540 (0.0080), while CycleGAN-turbo scored 
0.7909 (0.0027). The PSNR for the same transition in 
HongKong was 29.7831 (7.6484) with our model, while 

 
Fig. 2.  Comparison of images of traffic scenes from three chosen cities. 

 



CycleGAN-turbo reached 29.9508 (8.9165). In the “night-to-
day” transition for Los Angeles, the VPQ values were 14.1763 
for our pipeline and 14.1614 for the CycleGAN turbo, showing 
minimal variation between the methods. 

 
Fig. 3.   Comparison of the translated image from day to night by different 

GANs architecture. 

The scenes of the original video were processed through 
different architectures, namely CycleGAN [39], HEDNGAN 
[27], Pix2Pix [40], and ToDayGAN [41] for comparison for 
day-to-night translation. Fig. 3 shows the output of the different 
architectures. These outputs were compared with each other 
using DINO structure similarity [42] and KL divergence and 
reported in Table II. 

TABLE II.  COMPARISON OF DINO-STRUCT-DISTANCE AND KL DIVERGENCE 
FOR DIFFERENT METHODS 

Method City DINO-Struct KL-Divergence 
 

Ours 
London 0.2805 1.0860 

Hong Kong 0.2677 1.3936 
Los Angeles 0.3290 1.6416 

 
CycleGAN 

London 0.3611 0.6170 
Hong Kong 0.4029 0.3995 
Los Angeles 0.3645 0.9067 

 
HEDNGAN 

London 0.3840 0.2638 
Hong Kong 0.4841 0.4695 
Los Angeles 0.4283 0.6883 

 
Pix2Pix 

London 0.6432 4.3092 
Hong Kong 0.6786 0.4995 
Los Angeles 0.6211 2.9395 

 
ToDayGAN 

London 0.4755 0.6773 
Hong Kong 0.5550 2.1409 
Los Angeles 0.5775 1.9629 

IV. DISCUSSION 
     In this study, we proposed a novel pipeline to generate 

realistic traffic scene transformations across varying 
environmental conditions, combining CycleGAN-turbo for 

domain translation and Real-ESRGAN for resolution 
enhancement. Our method showed improved performance in 
producing realistic visuals in multiple scenarios, as reflected by 
metrics such as T-SIMM, PSNR and VPQ. 

     Our proposed model demonstrates superior performance 
compared to CycleGAN-turbo in various transformation 
scenarios, as evidenced by Fig. 2 and Table II. Qualitatively, our 
model consistently generates more realistic outputs with 
enhanced clarity, sharper structural details, and natural lighting 
transitions, particularly evident in day-to-night transformations, 
where the CycleGAN-turbo exhibits scattered lighting effects 
and less realistic shadows. Quantitatively, our model achieves 
higher T-SIMM scores in most scenarios, such as a 1.37% 
improvement for day-to-night transitions in Los Angeles 
(0.9729 vs. 0.9597) and a 7.97% improvement for night-to-day 
transitions in Hong Kong (0.8540 vs. 0.7909). For clear-to-rainy 
transitions, the T-SIMM score for London is nearly on par, with 
our model achieving 0.8205 compared to 0.8235, a minor 0.36% 
reduction that is offset by better perceptual realism and 
structural integrity. 

     Although PSNR values for our model are slightly lower 
in certain cases (e.g., 27.6784 vs. 27.7023 for day-to-night in 
London, a 0.09% difference), this is attributed to the trade-off 
between pixel-level fidelity and perceptual improvements. 
PSNR focuses on pixel-wise similarity and may not fully capture 
perceptual quality enhancements that result from subtle 
adjustments in texture and lighting. Similarly, VPQ scores, 
which reflect perceptual quality, show minimal variations, such 
as 14.0138 versus 14.0362 for day to night in London, a 
negligible 0.16% reduction, highlighting that perceived quality 
remains consistent while structural preservation and realism 
improve. For clear-to-rainy transformations, our model achieves 
slightly higher VPQ scores, such as 14.2089 in London 
compared to 14.1931, reflecting a 0.11% improvement, further 
showcasing its ability to handle diverse environmental 
conditions effectively. 

The results presented in Table II and Fig. 3 underscore the 
advantages of our proposed pipeline over existing methods. 
Table II demonstrates that our model consistently achieves 
better structural preservation (DINO Structure Similarity) and 
KL divergence compared to other models. For example, in the 
night-to-day transition, our method achieves a DINO similarity 
score compared to Cycle GAN (0.2805 vs. 0.3605) for London, 
28.52%, indicating better structural fidelity. 

A. Limitations and Future Work 
      The current study has several limitations. It relies heavily 

on established neural network architectures, such as CycleGAN-
Turbo and Real-ESRGAN, which restrict the adaptability of the 
approach to specific traffic scene transformations. Furthermore, 
the evaluation process lacks direct human feedback, which is 
crucial to validate the realism and quality of the generated videos 
and frames. Additionally, the pipeline only translates the frames 
from one environment to another, without addressing the density 
of traffic, such as the number of cars and pedestrians, which 
would sometimes be needed for experimental settings. 

     To address these limitations, future work will focus on 
collecting direct human feedback to enhance the evaluation and 



refinement of the generated outputs. This will involve recruiting 
participants to assess the perceptual realism of the transformed 
videos under various conditions, using methods such as Likert-
scale surveys, pairwise comparisons, and qualitative interviews. 
Additionally, neural network architectures specifically designed 
for traffic scene transformations will be developed to improve 
adaptability and performance, optimizing results for diverse 
environmental conditions and dynamic traffic scenarios. The 
network will also be extended to simulate traffic scenarios with 
varying densities of vehicles and pedestrians, enhancing its 
utility for applications such as ADAS training and traffic 
behaviour studies. Expanding the dataset to include diverse 
traffic environments, such as rural roads, extreme weather 
conditions, and culturally distinct traffic patterns, is another 
priority, with specialized datasets for rare conditions (e.g., heavy 
snowfall, fog) curated to test the pipeline’s adaptability further. 
Beyond human perceptual studies, advanced evaluation 
methods, such as eye-tracking and physiological metrics like 
heart rate variability, will be explored to gain deeper insights 
into user responses to transformed scenes. Statistical analyses 
will also be performed to validate the significance of observed 
improvements and establish the practical relevance of the results 
such as done by Sharma et al. [43], [44] and Javadi et al. [45]. 
By addressing these aspects, future work aims to refine the 
proposed pipeline further and extend its applicability to a 
broader range of real-world scenarios and practical use cases. 

V. SUPPLEMENTARY MATERIAL 
     Original videos used for network translation, translated 

videos, frames used for comparison, and source code are 
available at http://doi.org/10.4121/ef03b8d5-a25d-4a83-a371-
1c0a11c368d3. The maintained version of the code is available 
at https://github.com/Shaadalam9/traffic-pipeline. 
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