Navigating the Ocean with DRL: Path following for marine vessels
Jose, J., & Alam, M. S., & Somayajula, A.S.
Proceedings of the Sixth International Conference in Ocean Engineering (ICOE2023) (2023)
ABSTRACT Human error is a substantial factor in marine accidents, accounting for 85% of all reported incidents. By reducing the need for human intervention in vessel navigation, AI-based methods can potentially reduce the risk of accidents. AI techniques, such as Deep Reinforcement Learning (DRL), have the potential to improve vessel navigation in challenging conditions, such as in restricted waterways and in the presence of obstacles. This is because DRL algorithms can optimize multiple objectives, such as path following and collision avoidance, while being more efficient to implement compared to traditional methods. In this study, a DRL agent is trained using the Deep Deterministic Policy Gradient (DDPG) algorithm for path following and waypoint tracking. Furthermore, the trained agent is evaluated against a traditional PD controller with an Integral Line of Sight (ILOS) guidance system for the same. This study uses the Kriso Container Ship (KCS) as a test case for evaluating the performance of different controllers. The ship's dynamics are modeled using the maneuvering Modelling Group (MMG) model. This mathematical simulation is used to train a DRL-based controller and to tune the gains of a traditional PD controller. The simulation environment is also used to assess the controller's effectiveness in the presence of wind.